微分演化算法在桁架形状优化中的应用

唐和生1, 王兆亮1, 薛松涛1,2

(1. 同济大学 结构工程与防灾研究所, 上海 200092; 2. 日本近畿大学 理工学部建筑学科, 日本 大阪 577-8502)

摘要: 为了获得全局最优和解决具有应力约束、几何约束以及局部稳定性约束的桁架形状优化问题中两类不同设计变量耦合的困难, 将1种新型智能优化算法——微分演化(Differential Evolution, DE)应用于桁架结构的形状优化问题中。给出了考虑节点坐标和截面面积两类不同性质的设计变量的桁架结构优化的数学模型, 并对几个经典的桁架结构进行优化, 将所得结果与其他优化算法结果进行了比较。数值结果表明了 DE 算法具有良好的收敛性和稳定性, 可以有效地进行桁架结构的形状优化设计。

关键词: 微分演化; 全局最优; 形状优化; 桁架结构; 数学模型; 变量耦合

中图分类号: TU323.4; TU311 文献标志码: A 文章编号: 1674-4764(2010)01-0042-09

Truss Structure Shape Optimization with Differential Evolution Algorithm

TANG He-sheng1, WANG Zhao-liang1, XUE Song-tao1,2

(1. Research Institute of Structural Engineering and Disaster Reduction, Tongji University, Shanghai 200092, P. R. China; 2. Department of Architecture, School of Science and Engineering, Kinki University, Osaka 577-8502, Japan)

Abstract: Differential Evolution (DE) was introduced to get the global optimum and overcome the difficulties encountered by coupling two types of design variables in the shape optimization of truss structures with stress, geometry, and local stability constraints. The basic principle of DE algorithm was presented in detail first, and then mathematical model for shape optimization of truss structures was presented, in which two types of design variables, such as the node coordinates and section areas, were considered simultaneously. Several classical problems were solved with DE algorithm, and the results were compared with those using the other optimization methods. It was shown that DE algorithm had good convergence and stability and could be applied for shape optimization of truss structures effectively.

Key words: differential evolution; global optimization; shape optimization; truss structures; mathematical models; coupling of design variables

桁架结构优化设计可以根据设计变量的类型分为不同的层次: 尺寸优化、形状优化、拓扑优化。其中结构的形状优化是指在结构的拓扑构形不变的情况下, 同时对杆件的截面尺寸和节点位置进行优化, 使结构在满足约束条件的同时达到目标函数值最小。由于设计变量的数目多, 且两类变量的性质截然不同, 对目标函数和约束函数具有不同的非线性性质。2类变量的耦合将导致数学上的困难甚至使计算不收敛1。以往的解决办法是分层优化方法2-3。该方法将截面变量和形状变量分开, 分级进行优化, 2级优化交替进行直至收敛。这样做是为了使每一阶段所考虑的数学模型规模变小, 求解相
对容易。但由于分层优化导致变量空间上分割，可能带来解空间可行域的缩小而丢失真正的最优解，因此形状和尺寸优化分开单独研究不能保证目标函数值最小。因此发展一些更加通用、有效的全局优化算法来解决形状优化问题成为一种迫切的需要。

在结构工程中，微分演化算法在桁架形状优化方面的研究与应用还很少。论文将DE算法应用于考虑2类变量耦合的具有应力约束、几何约束以及局部稳定性约束的桁架结构形状优化，通过对典型算例的求解并与相关文献的结果比较，来评价利用DE进行桁架形状优化的效果。

1 微分演化（DE）算法

一个包括给定个数的参数优化问题可以用一个个维的向量来描述，该向量可以表示为：

$$ x_i = (x_{i1}, x_{i2}, \ldots, x_{in})^T \in S, i = 1, 2, 3, \ldots, NP. $$

其中 $S \subseteq R^n$ 为优化问题的搜索空间；DE算法利用NP作为向量 x_i 每一个的个体数，类似于遗传算法。DE算法通过变异、交叉和选择过程实现种群的更新进化。具体过程如下：

1.1 变异过程

变异的目的是为了保证种群的多样性，并利用合适的参数变化来指导已有的目标方向在合适的时间内达到一个更好的结果，从而保证了搜索的鲁棒性。

变异操作过程如下：一代的个体 $x_i^{(g)}$, $i = 1 \ldots NP$，其中 G 表示代数。根据不同的变异方式更新则得到 $G + 1$ 子代向量：

$$ \psi^{(g+1)} = (\psi_1^{(g+1)}, \psi_2^{(g+1)}, \ldots, \psi_n^{(g+1)})^T. $$

该文采用Storn和Price[8]推荐的DE/current-to-best/1/bin变异方式进行结构优化，该变异方式对应式(1)：

$$ \psi_k^{(g+1)} = x_i^{(g)} + \alpha (x_i^{(g)} - x_j^{(g)}) + \beta (x_k^{(g)} - x_m^{(g)}) $$

（1）

其中，$x_m^{(g)}$ 为算法第 g 代群体中适应值最小的个体；F 为变异常数，为随机数。它们的大小控制了变量间的差异，保证进化的进行。r_1, r_2 为互不相同的整数，分别为从集合{1, 2, \ldots, $i-1, i+1, \ldots, NP$}中随机选出的向量编号。

1.2 交叉过程

与GA算法相似，DE算法中的个体经过变异后也进行交叉操作。对于群体中第 $G + 1$ 代经过变异后的向量个体 $\psi^{(g+1)}$ 按照公式（2）进行交叉，将产生新的个体：

$$ u_k^{(g+1)} = (u_1^{(g+1)}, u_2^{(g+1)}, \ldots, u_n^{(g+1)})^T. $$

$$ u_k^{(g+1)} = \begin{cases}
\psi_k^{(g+1)} & \text{if} (rand(j) \leq CR) \text{ or } (j = rand(i)) \\
\psi_k^{(g+1)} & \text{if} (rand(j) > CR) \text{ or } (j \neq rand(i))
\end{cases} $$

（2）

其中，$j=1, 2, \ldots, n$；$\text{rand}(j) \in [0, 1]$ 是 n 个 $0 \sim 1$ 之间相互独立的随机数中的第 j 个；$\text{rand}(i)$ 是随机从集合{1, 2, \ldots, n}中取得个体向量维度的序号；CR为交叉因子，将决定个体之间交叉的概率。

1.3 选择过程

DE算法采用与GA算法不同的贪婪准则：通过比较由变异和交叉产生的两个个体和代个体，选择适应度值更大的个体，即如果父代个体适应度值更优将继续保留在群体中；否则，保留子代个体。选择过程由式（3）表示：

$$ x_i^{(g+1)} = \begin{cases}
\psi_k^{(g+1)} & \text{if} (f(\psi_k^{(g+1)}) < f(x_i^{(g)})) \\
x_i^{(g)} & \text{otherwise}
\end{cases} $$

（3）

2 桁架结构形状优化

2.1 桁架结构形状优化的数学描述

2.1.1 设计变量

桁架结构的形状优化设计包含2类设计变量：描述桁架结构的形状的节点坐标和杆件截面面积。该文考虑2类不同性质变量间的耦合。
合作用,故定义设计变量为
\[A = [A_1, A_2, \ldots, A_n, X_1, X_2, \ldots, X_m]^T \] (4)
其中: \(A_1, A_2, \ldots, A_n \) 为杆件的截面积, \(X_1, X_2, \ldots, X_m \) 为变量连接后各节点的坐标。

2.1.2 目标函数 目标函数又称为评价函数，用来评价一种设计方案好坏。桁架形状优化设计中，以
桁架的重量最小做为优化的目标。本文选择目标函数包含桁架的总重量和处理约束的惩罚项为
\[\min W = \sum_{i=1}^n \rho_i A_i L_i(X) + \lambda M \] (5)
其中: \(W \) 为结构的总重量(目标函数); \(L_i(X) \) 为第 \(i \) 组杆件的长度; \(\rho \) 分别为第 \(i \) 组杆件的截面积及
密度; \(n \) 为截面设计变量进行变量连接后杆件的组数; \(M \) 为预先定义的一个大数; \(\lambda \) 为罚函数因子，用
来处理约束问题。当结构设计变量满足约束条件时 \(\lambda = 0 \)，否则 \(\lambda = 1 \)。

2.1.3 约束条件
1) 应力约束条件。
\[g_1(A, X) = [\sigma_i] - \sigma_i \geq 0, (k = 1, 2, \ldots, K) \] (6)
其中: \(g_1(A, X) \) 为应力约束; \(\sigma_i \) 分别为第 \(k \) 组杆件的允许应力值和各种工况下的不超过应力值，
\(K \) 为杆件的总组数。
2) 节点的位移约束条件
\[g_2(A, X) = [u_j] - u_j \geq 0, \]
\[(j = 1, 2, \ldots, m, l = 1, 2, \ldots, ND) \] (7)
其中: \([u_j] \) 分别为节点位移; \(u_j \) 分别为第 \(j \) 节点在给定方向上的位移允许值; \(m \) 为节点总数; \(ND \) 为节点位移约束维数。
3) 设计变量的上下限约束
\[A_{\min} \leq A \leq A_{\max}, [\bar{X}_i] \leq x_i \leq \bar{x}_i, (c = 1, 2, \ldots, t) \] (8)
其中: \(A_{\min}, A_{\max} \) 为分别设定的杆件的截面尺寸的上限与下限; \([\bar{X}_i], \bar{x}_i \) 分别是第 \(c \) 坐标的上下限，
\(t \) 为节点变量数。
4) 局部稳定性约束。杆件受压时，存在压杆稳定性问题。在形状优化过程中，节点位置是变化的，所
以杆件长度和压杆稳定系数也是动态变化的。因此，受压杆件局部稳定性约束条件为
\[g_3(A, X) = \psi_i[\sigma_i] - \sigma_i \geq 0, (i = 1, 2, \ldots, q) \] (10)
其中: \(g_3(A, X) \) 为考虑压杆稳定的应力约束; \(\psi_i \) 为对应第 \(i \) 根受压杆件的受压稳定系数; \(q \) 为受压杆件的总数。

2.2 基于 DE 算法的桁架结构形状优化程序
采用 Matlab 进行编程计算。基于 DE 算法的
桁架形状优化的流程如下:
Step 1: 初始化 DE 所需参数，如变异和交叉因子，
初始化 DE 的种群，使第一代个体变量随机在搜索
空间中产生;
Step 2: 选择交叉操作，计算出每个个体所代表
的设计变量对应的结构的形态变量; 如各杆件应力
和节点位移;
Step 3: 计算每个个体的适应值，对于违反
约束的个体在其实体函数值中加一个非常大的常数
值 M，选出最优个体 \(x_{\text{best}} \);
Step 4: 对每个个体根据式(1)进行变异操作，
并且按照式(2)对每个个体(父代)以及变异个体进
行交叉操作，得到新的个体(子代);
Step 5: 计算每个子代个体以及父代个体的
适应值; 按照式(3)选择适应值好的作为下一代种群
中的个体;
Step 6: 计算每个子代个体的适应值，并找
到最优的个体; 如果新的最优个体的适应值比上一代
\(x_{\text{best}} \) 的适应值好，则更新 \(x_{\text{best}} \) 值，称为当前最优个体;
Step 7: 满足算法终止条件，输出最优个体 \(x_{\text{best}} \)
以及最优个体的适应值，否则返回 Step 2。

3 算例分析
3.1 25 杆空间桁架
图 1 所示为 25 -杆空间桁架。L = 635 mm, 应力
约束为 \([-275.8, 275.8]\) MPa, 材料的弹性模量 \(E =
68 950 \) MPa, 密度 \(\rho = 2678 \) kg/m³, 1.2 节点的竖向
位移约束 \(d_{\text{max}} = 8.889 \) mm. 2 种工况下节点荷载见
表 1, 杆件分组及对应的允许应力见表 2。

图 1 25-杆空间桁架
表1 荷载工况及节点荷载表

<table>
<thead>
<tr>
<th>工况</th>
<th>节点号</th>
<th>F_1/kN</th>
<th>F_2/kN</th>
<th>F_3/kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4.448</td>
<td>44.82</td>
<td>-22.241</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>44.82</td>
<td>-22.241</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>22.241</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>22.241</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

表2 杆件分组及允许应力表

<table>
<thead>
<tr>
<th>组号</th>
<th>杆件号</th>
<th>允许应力</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>σ^+/MPa</td>
</tr>
<tr>
<td>A_1</td>
<td>1</td>
<td>275.8</td>
</tr>
<tr>
<td>A_2</td>
<td>2, 3, 4, 5</td>
<td>275.8</td>
</tr>
<tr>
<td>A_3</td>
<td>6, 7, 8, 9</td>
<td>275.8</td>
</tr>
<tr>
<td>A_4</td>
<td>10, 11</td>
<td>275.8</td>
</tr>
<tr>
<td>A_5</td>
<td>12, 13</td>
<td>275.8</td>
</tr>
<tr>
<td>A_6</td>
<td>14, 15, 16, 17</td>
<td>275.8</td>
</tr>
<tr>
<td>A_7</td>
<td>18, 19, 20, 21</td>
<td>275.8</td>
</tr>
<tr>
<td>A_8</td>
<td>22, 23, 24, 25</td>
<td>275.8</td>
</tr>
</tbody>
</table>

为了进行比较，分别对考虑和不考虑局部稳定性约束2种情况分别进行优化计算。考虑到工程实际情况，该文尺寸下界取64.5 mm^3，而非文献[2]中的6.45 mm^3。

表3 5杆空间桁架形状优化节点坐标

<table>
<thead>
<tr>
<th>节点</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-X_2</td>
<td>Y_2</td>
<td>Z_2</td>
</tr>
<tr>
<td>2</td>
<td>X_4</td>
<td>Y_2</td>
<td>Z_4</td>
</tr>
<tr>
<td>3</td>
<td>-X_4</td>
<td>Y_4</td>
<td>Z_4</td>
</tr>
<tr>
<td>4</td>
<td>X_4</td>
<td>Y_4</td>
<td>Z_4</td>
</tr>
<tr>
<td>5</td>
<td>X_4</td>
<td>-Y_4</td>
<td>Z_4</td>
</tr>
<tr>
<td>6</td>
<td>-X_4</td>
<td>-Y_4</td>
<td>Z_4</td>
</tr>
<tr>
<td>7</td>
<td>-2 540</td>
<td>2 540</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>2 540</td>
<td>2 540</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>2 540</td>
<td>-2 540</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>-2 540</td>
<td>-2 540</td>
<td>0</td>
</tr>
</tbody>
</table>

表4 5杆空间桁架杆件分组及允许应力表

<table>
<thead>
<tr>
<th>杆件</th>
<th>工况1</th>
<th>工况2</th>
<th>允许应力</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>σ^+/MPa</td>
<td>σ^-/MPa</td>
<td>σ^+/MPa</td>
</tr>
<tr>
<td>1</td>
<td>275.8</td>
<td>-242.04</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>275.8</td>
<td>-97.94</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>275.8</td>
<td>-119.36</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>275.8</td>
<td>-242.04</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>275.8</td>
<td>-242.04</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>275.8</td>
<td>-46.62</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>275.8</td>
<td>-47.99</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>275.8</td>
<td>-76.44</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>275.8</td>
<td>-242.04</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>275.8</td>
<td>-242.04</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>275.8</td>
<td>-242.04</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>275.8</td>
<td>-242.04</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>275.8</td>
<td>-242.04</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>275.8</td>
<td>-242.04</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>275.8</td>
<td>-242.04</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>275.8</td>
<td>-242.04</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>275.8</td>
<td>-242.04</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>275.8</td>
<td>-242.04</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>275.8</td>
<td>-242.04</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>275.8</td>
<td>-242.04</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>275.8</td>
<td>-242.04</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>275.8</td>
<td>-242.04</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>275.8</td>
<td>-242.04</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>275.8</td>
<td>-242.04</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>275.8</td>
<td>-242.04</td>
<td></td>
</tr>
</tbody>
</table>

图2 5杆空间桁架形状优化的评价函数收敛曲线

注：表中加粗的数字表示相应的杆件达到满应力，表7,10,12与此同。
表 5 25 杆空间桁架形状优化结果比较

<table>
<thead>
<tr>
<th>设计变量</th>
<th>该文结果/mm³</th>
<th>文献[2]/mm³</th>
<th>文献[15]/mm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>175.48</td>
<td>6.45</td>
<td>57.1</td>
</tr>
<tr>
<td>A₂</td>
<td>833.89</td>
<td>545.8</td>
<td>562.4</td>
</tr>
<tr>
<td>A₃</td>
<td>552.65</td>
<td>396.1</td>
<td>462.5</td>
</tr>
<tr>
<td>A₄</td>
<td>64.5</td>
<td>6.45</td>
<td>64.5</td>
</tr>
<tr>
<td>A₅</td>
<td>82.55</td>
<td>6.45</td>
<td>66.7</td>
</tr>
<tr>
<td>A₆</td>
<td>64.65</td>
<td>65.8</td>
<td>177.5</td>
</tr>
<tr>
<td>A₇</td>
<td>65.43</td>
<td>318.7</td>
<td>64.5</td>
</tr>
<tr>
<td>A₈</td>
<td>749.88</td>
<td>678.1</td>
<td>679</td>
</tr>
<tr>
<td>X₃</td>
<td>100.09</td>
<td>254</td>
<td>102.2</td>
</tr>
<tr>
<td>Y₃</td>
<td>39.96</td>
<td>0</td>
<td>2.4</td>
</tr>
<tr>
<td>Z₃</td>
<td>3 356.03</td>
<td>3 356.4</td>
<td>3 356.4</td>
</tr>
<tr>
<td>X₄</td>
<td>770.15</td>
<td>520.7</td>
<td>841.3</td>
</tr>
<tr>
<td>Y₄</td>
<td>511.78</td>
<td>886.4</td>
<td>686.4</td>
</tr>
<tr>
<td>Z₄</td>
<td>2 915.67</td>
<td>2 474</td>
<td>2 886.1</td>
</tr>
</tbody>
</table>

总重量/kg 55.83 61.5 56.819

图 3 25 杆空间桁架形状优化结果

由图 2 可知，不考虑局部稳定性约束时，25 杆空间桁架形状的优化计算在迭代大约 70 次后已经收敛。表 4 中，第 1 种工况下杆件 2, 5, 7, 8, 19, 20 达到满应力状态，第 2 种工况下杆件 17, 24 达到满应力状态。由表 5 知，优化后桁架的总重量为 55,830 kg，优于文献[2, 16]的结果。

3.1.2 考虑局部稳定性约束 节点 1, 2 的位置在优化过程中保持固定，节点 7, 8, 9, 10 必须在 X-Y 平面内，因此节点坐标设计变量设为 [X₁, Y₁, Z₁, Xₐ, Yₐ, Zₐ]ᵀ。其他节点的位置坐标根据对称性得出。设计变量为 [A₁, A₂, A₃, A₄, A₅, A₆, A₇, X₈, Y₈, Z₈, X₉, Y₉, Z₉]ᵀ。DE 参数取值同前。局部稳定性约束为 39.27EA₁/L₁² ≤ σₖ（杆件号 i = 1, 2, ..., 25，工况数 l = 1, 2），节点坐标见表 6。考虑局部稳定性约束的 25 杆空间桁架形状优化评价函数曲线见图 4，优化后的桁架在两种工况下的杆件应力及对应的应力约束值见表 7，最终形状见图 5。文献[2, 15]及该文结果比较见表 8。
第 1 期
唐和生，等：微分演化算法在桁架形状优化中的应用

表 8 25 杆空间桁架形状优化结果比较

<table>
<thead>
<tr>
<th>设计变量</th>
<th>该文结果/mm³</th>
<th>文献[17]/mm³</th>
<th>文献[15]/mm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>111,929</td>
<td>6,4516</td>
<td>65.1</td>
</tr>
<tr>
<td>A₂</td>
<td>433.74</td>
<td>358,0638</td>
<td>301</td>
</tr>
<tr>
<td>A₃</td>
<td>601.29</td>
<td>973,5464</td>
<td>642.1</td>
</tr>
<tr>
<td>A₄</td>
<td>65.01</td>
<td>6,4516</td>
<td>64.7</td>
</tr>
<tr>
<td>A₅</td>
<td>127.31</td>
<td>86,45144</td>
<td>91</td>
</tr>
<tr>
<td>A₆</td>
<td>104.88</td>
<td>94,3852</td>
<td>263.5</td>
</tr>
<tr>
<td>A₇</td>
<td>378.63</td>
<td>512,257</td>
<td>442.3</td>
</tr>
<tr>
<td>A₈</td>
<td>359.28</td>
<td>444,5152</td>
<td>411</td>
</tr>
<tr>
<td>X₁</td>
<td>807.43</td>
<td>913,638</td>
<td>911.9</td>
</tr>
<tr>
<td>Y₁</td>
<td>2 171.11</td>
<td>1 230,376</td>
<td>1 530.3</td>
</tr>
<tr>
<td>Z₁</td>
<td>2 212.81</td>
<td>3 095,498</td>
<td>3 060.4</td>
</tr>
<tr>
<td>X₈</td>
<td>1 159.56</td>
<td>1 180,846</td>
<td>971.2</td>
</tr>
<tr>
<td>Y₈</td>
<td>3 836.63</td>
<td>3 064,256</td>
<td>3 117</td>
</tr>
</tbody>
</table>

总重量/kg | 79.23 | 84.96 | 82.022 |

图 4 25 杆空间桁架形状优化的评价函数曲线

图 5 25 杆空间桁架形状优化结果

由图 4 可知，考虑局部稳定性约束后，25 杆空间桁架形状的优化计算在迭代约 150 次后完全收敛。表 7 中，在 1, 2 节点 X, Y 方向的最大位移为 8.84 mm时，第一种工况下杆件 2, 5 达到满应力状态，第二种工况下无杆件达到满应力状态。由表 8 可知，优化后所得桁架的总重量为 79.23 kg，优于文献[17,15]的结果。由表 5 和表 8 可知，该文算法搜索空间更宽，得到的总重量却更轻，所以该文结果更优。对比表 5 和表 8 还可知，引人了局部稳定性约束条件后结构的总重量会增加。

3.2 37 杆空间桁架

图 6 所示为 37 杆空间桁架的初始形状，节点坐标见表 9。假设下弦节点位置保持不变，上弦节点可沿竖直方向移动，P = 10 kN。节点 10 的最大竖直位移为 10 mm，结构对称性保持不变，最小截面积为 50 mm²。材料的弹性模量 E = 210 GPa，密度 ρ = 7800 kg/m³，全部杆件的允许应力均为 240 MPa。

图 6 37 杆空间桁架

表 9 37 杆空间桁架节点坐标

<table>
<thead>
<tr>
<th>节点</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-5 000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>-4 000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-4 000</td>
<td>Y₃</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>-3 000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>-3 000</td>
<td>Y₃</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>-2 000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>-2 000</td>
<td>Y₃</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>-1 000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>-1 000</td>
<td>Y₃</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1 000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>Y₃</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>1 000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>1 000</td>
<td>Y₃</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>2 000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>2 000</td>
<td>Y₃</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>3 000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>3 000</td>
<td>Y₃</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>4 000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>4 000</td>
<td>Y₃</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>5 000</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

3.2.137 杆平面桁架在应力及位移约束下的形状优化

根据结构的对称性，取设计变量为 [A₁, A₂, A₃, A₄, A₅, A₆, A₇, A₈, A₉, A₁₀, A₁₁, A₁₂, A₁₃, A₁₄, A₁₅, A₁₆, A₁₇, A₁₈, Y₃, Y₅, Y₇, Y₉, Y₁₁]T。
DE 参数取值：\(NP = 100, F_1 = 0.75, F = 0.6, \\
CR = 0.85, Max_It = 300 \)

图 7 为桁架桥在应力及位移约束下形状优化评价函数曲线，结果显示，迭代 120 次时曲线已经收敛。表 10 为优化后的桁架杆件应力及对应的应力约束值，图 8 为优化后的形状。表 11 为文献结果对比，表明 DE 算法结果优于所有其他结果。

<table>
<thead>
<tr>
<th>样件</th>
<th>应力值 (\sigma/I) MPa</th>
<th>允许应力</th>
<th>允许应力</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>239.91</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>2</td>
<td>239.91</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>3</td>
<td>199.786</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>4</td>
<td>199.786</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>5</td>
<td>148.514</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>6</td>
<td>148.514</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>7</td>
<td>239.983</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>8</td>
<td>239.983</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>9</td>
<td>91.79</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>10</td>
<td>91.79</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>11</td>
<td>83.277</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>12</td>
<td>83.277</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>13</td>
<td>239.644</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>14</td>
<td>239.644</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>15</td>
<td>128.261</td>
<td>240</td>
<td>240</td>
</tr>
</tbody>
</table>

表 10 中加粗的应力值均达到满应力，荷载作用下的 10 节点的 \(y \) 方向最大位移为 9.983 mm，可以看出结构优化结果均满足应力约束、位移约束。最优结果为 37.922 kg，比文中所引用的文献结果要好。
3.2.2 带局部稳定性约束 37 杆空间桁架形状优化
局部稳定性约束为：

$$\sigma_{cr} = \frac{\pi^2 E A}{4 I_0^3} \sigma_k$$

带局部稳定性约束 37 - 杆件形状优化评价函数曲线见图 9，杆件应力以及对应的允许应力见表 12，优化的最终形状见图 10。文献结果对比见表 13。

| 图 9 37 杆桁架形状优化效果曲线 |
| 内容 | 37 杆桁架形状优化结果 |

| 图 10 37 杆桁架形状优化结果 |
表 13 37 杆框架形优化结果比较

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>844.61</td>
<td>883.1</td>
<td>870.7</td>
<td>990.79</td>
</tr>
<tr>
<td>A2</td>
<td>51.34</td>
<td>50.1</td>
<td>51.9</td>
<td>50.3</td>
</tr>
<tr>
<td>A3</td>
<td>51.10</td>
<td>50.1</td>
<td>51.3</td>
<td>113.1</td>
</tr>
<tr>
<td>A4</td>
<td>764.97</td>
<td>715.4</td>
<td>818.6</td>
<td>754.8</td>
</tr>
<tr>
<td>A5</td>
<td>50.40</td>
<td>50.2</td>
<td>52.0</td>
<td>50.3</td>
</tr>
<tr>
<td>A6</td>
<td>50.58</td>
<td>50.1</td>
<td>50.3</td>
<td>50.3</td>
</tr>
<tr>
<td>A7</td>
<td>716.70</td>
<td>528.2</td>
<td>746.8</td>
<td>572.6</td>
</tr>
<tr>
<td>A8</td>
<td>51.34</td>
<td>50.1</td>
<td>50.3</td>
<td>50.3</td>
</tr>
<tr>
<td>A9</td>
<td>50.04</td>
<td>183.0</td>
<td>67.4</td>
<td>78.5</td>
</tr>
<tr>
<td>A10</td>
<td>50.84</td>
<td>183.7</td>
<td>50.0</td>
<td>78.5</td>
</tr>
<tr>
<td>A11</td>
<td>50.53</td>
<td>194.0</td>
<td>50.2</td>
<td>95.0</td>
</tr>
<tr>
<td>A12</td>
<td>50.16</td>
<td>192.8</td>
<td>51.3</td>
<td>63.6</td>
</tr>
<tr>
<td>A13</td>
<td>50.75</td>
<td>187.4</td>
<td>50.2</td>
<td>63.6</td>
</tr>
<tr>
<td>Y1</td>
<td>649.21</td>
<td>1021.0</td>
<td>508.2</td>
<td>1000.0</td>
</tr>
<tr>
<td>Y2</td>
<td>1154.39</td>
<td>1718.0</td>
<td>904.4</td>
<td>1800.0</td>
</tr>
<tr>
<td>Y3</td>
<td>1506.12</td>
<td>2269.0</td>
<td>1781.0</td>
<td>2300.0</td>
</tr>
<tr>
<td>Y4</td>
<td>1686.25</td>
<td>2669.0</td>
<td>1346.1</td>
<td>2600.0</td>
</tr>
<tr>
<td>Y5</td>
<td>1761.12</td>
<td>2734.0</td>
<td>1363.4</td>
<td>4700.0</td>
</tr>
<tr>
<td>总重量/kg</td>
<td>75.652</td>
<td>105.153</td>
<td>77.455</td>
<td>87.459</td>
</tr>
</tbody>
</table>

由表 9 可知，在考虑局部稳定性约束后，37 杆框架形优化计算在迭代约 150 次后收敛，表 12 中加粗的数值表示对应的杆件达到了满应力，节点在 y 方向最大的位移仅为 5.01 mm，优化结果满足约束条件而未越界。由表 13 可知，优化结果的总重量为 75.652 kg，优于文献[15-17]中的结果。由以上分析可知，该文的算法可以有效地进行桁架结构的形状优化设计。

WEST S. Improving the sustainable development of building stock by the implementation of energy efficient, climate control technologies[J]. Building and Environment, 2001, 36: 281-289.

ISO. International Standard 7243, Hot environments-estimation of the heat stress on working man, based on the WBGT-index (wet bulb globe temperature) [S].

(编译: 杨玲)