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Many results of the optimality conditions for set-valued functions have been obtained in recent
years, for example, Lil'l,ZhongFei Li and GuangYa Chen!?,etc. The notion of preinvex for scalar-
valued functions was introduced into literature by Weirl*) and Weirl*) by relaxing the convexity as-
sumption on the domain set of the functions. Davinder Bhatia® had extended the class of cone-convex
set-valued functions to the class of cone-preinvex set-valued functions. A fractional programming prob-
lem invelving set-valued functions has been considered.

Motivated by Li'J,in the present paper,we will establish a necessary and sufficient optimality
condition and some necessary optimality conditions for cone-preinvex set-valued functions in the topo-

logical vector space.

1 Notion and Preliminary Results

Let X and Y be topological vector spaces. A set-valued function F from X into Y is a function
that associates a unigue subset of ¥ with each point of X. Eguivalently, F can be viewed as a function
from X into the power setof ¥, i.e. F; X—2%,

The domain of F:X—=>2" is given by

D(F) = {x(X|F(z) # &}

For ECX,F,E—2" ,denote, F(EY= ) .. eF (z}.

A subset I of Y is said to be a cone if Af€E I for every §€ I',and A>>0. A convex cone is one for
which A& +A,8,E T for each £,,5, €T and 4 ,4;220. A pointed cone is one for which '[N {(—I") =
{0}, where O is the zero element of Y. Let I" be a pointed convex cone with int ' &,

Then we define three cone orders with respect to I' as

Sl ff -6 €T,
'51 grez iff ‘Ez - Ex € P\{D}a
<& iff & — £ € im I,

The set of all the weak Mminimal points and weak I-maximal points of a set A in ¥ are defined
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as:
W — Minrd = {3, & A|there exits no y € A for which y <3},
W — MaxrAd = {y, & Althere exits no y € A4 for which y, <ry}.
If 3,€ A is a weak minima of A with respect to cone I'. then it is denoted by y, € W —Miny A.
The polar cone I"" of I" is defined as:
=iy €Y |,y r=0forall y € I'}.
The following result is due to Wang and Li‘®..
Lemma 1.1 If ’'&€Y is a pointed convex cone with int_I‘-—,ﬁ@' »then

(1) M+int I'Cint I

(2) (33" 2>>0 for any y* E"\{0} and yEint I
Definition 1. 1©7  Let ECX be a convex set and F: E—+2" be a set-valued function and I" be a pointed
convex cone in Y. Then F is said to be I'—convex on E if for every x;,2,€ E,t & [0,1].

tF () + (1 — )F(x;) CFQGx + (1 — t)x,) + I

We define a new class of set-valued functions, called a preinvex set-valued function.

Definition 1. 28 Let £ be a subset of X ,F: E—~2" and let I" be a pointed convex cone in Y. F is said
to be I’~—preinvex on £ if there exits a function 7 defined on X X X and values in X such that for any
i E B € [0,1]

tF () + (1 — )F(x,) C Flx; + tP{xy»x2)] + I.

It is implicit in the above definition that for zy,2; € E, and ¢ €[0,1], 1, +(x; 1 12) € E, we call
such a set E to be an invex set with respect to 7.

This definition generalizes the class of set-valued functions, as in the case where F is a I'—con-
vex function on E; then by taking z, —zx,=%(xysx;) for all z, ,x; € E, F becomes I"— preinvex, How-
ever,the converse need not be true ,that is,a I"— preinvex set-valued function need not be I"—con-
vex.

The following theorem characterizes the generalized Farkas —Minkowski type theorem for prein-

vex set-—valued functions.
Theorem 1.1%  Let E be an invex subset of X (with respect to a function 7, X X X—X). I the set-
valued function F:E—2" is ’—preinvex and G: E—~27% is A—preinvex{with respect to some function
73, where I" and A are pointed convex cones in topdogical vector spaces ¥ and Z, respectively, then
exactly one of the following statements is true:

{1)there exists x& E such that

Fo)yN(—imt M =&
G(x) N (—int A) = &
(2>there exists (y' 2" 27 (0,0) in I"X A such that for every € E,
{y* o F{x)) + {2",G(z)y = .

The proof is given in [5].

Corollary 1.2 I in Theorem 1.1, we assume further that there exists 2" € E such that
G(z") N (—int A)FZ,then y* F0,

Let Y, Z be ordered topological vector spaces with pointed convex cones I and A, respectively,the
topological interiors of which are both nonempty. Then the product space ¥ X £ is also an ordered
topological vector space with a pointed convex cones I' X A, We shall introduce below two common
lemmas for the topological interior and the polar cone of DX A. '

Lemma 1.2 int("XA)=int I'Xint A
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Lemma 1.3 (PxA)"=I'"xXA".

The proofs of the two above Lemmas are easy.

2 Optimality Conditions

Let X be a topological vector space.and A,D be an invex subset of X (with respect to a function
7; X% X—=X). Let Y, Z he ordered topological vector spaces with pointed convex cones I'and A, re-
spectively, the topological interiors of which are both nonempty. Let F:X—2",G: X—+2% be set-val-
ued functions from X t0o Y and Z, respectively,

In this paper, we consider the following two classes of the optimization problems of set-valued

functions
min e #F (z) (P1;

min, ¢ pF ()
.. G N (— A& & P2)
The feasible set of problem (P2) is defined by
K= {z(D|Gx) N (— A I}
Remark 1 Clearly, 3o €W —Ming Aiff (A—y) N (—int =, where A—yo={y—y|yEA}.
Definition 2.1 A point x,€ A is said to be a weak efficient solution of (P1) if 3 v, € F(x,) such
that 3, EW—MinrF(A4). '
Definition 2.2 A point 2, € K is said to be a weak efficient solution of (P2) if 3 yo € F(x,) such
that y, €W -—-MinrF{K).
Clearly,.z, € A4 is a weak efficient solution of (P13 iff 3 yo € F(xo) such that
[FAY — ] N (—int ') = &.
and 2, € K is a weak efficient solution of (P2) iff 3 &€ Flxs) such that
[FIK)—y]lN(—int I = gI.

First, we consider the optimality condition for problem (P1).

and

Theorem 2.1 Suppose that F{x) is ' —preinvex oo A, and that o€ A. Then xpis a weak efficient
soluticn of (P1) iff there exists y, & F(xy), and y* €I'*, with 3" 70 such that
inf(F(A), 3"y = (yo,y™ ).
Proof. Necessity. By Definition 2. 1,there exists yo€ F(x,) such that v, EW—MinyF(A),i.e. [F
(x)—wlN (—it )= dor all € A. It is clear that F(z)-—y, is also I'—preinvex on A,for F
() is I’ —preinvex on A. Thus,using Theorem 2. 1,there exists y" €I'", with y* 70 such that
(F(A) — 3osy "} 20, ie. (FIAY,¥"Y 2= (vory" ).
However, yo& F(xy) ,therefore,inf{F(A), y" )={y0,y" ).
Sufficiency. It follows directly from Theorem 1. 1.
Q.E.D.
Now, we establish the optimality of (P2). Let
H{x) = F{z) X G{z),z € X.

Then H is a set-valued function from X to product space Y X Z which is an ordered topological
vector space with pointed convex cone I'X A with 2 nonempty topological interiar.
Theorem 2.2 Suppose the following .

1) 2,€ K is a weak efficient solution of (P27,
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(2) G(x) is A—premvex on [ and H{x) is I'X A—premvex on K.
Then there exists € F () and y €L, 2" €A ,with (¥",2* )7(0,0) such that
inf [(F(x),n ) + (Gx),2" 3] = {3os¥" s
inf < Gl{xpy),z") = 0.
Proof. According to Definition 2. 2,3 3, € F(x,) such that
[(F(K) —»]N(—im D)= (. (1
For any € X, we have [F(x) — 3] XG(x)=F{x) XG{x)— (3,0). Let H" (z)=H (z)— (305
0), Since H is I'’ X A—preinvex on K, of course, H* is also I' X A—preinvex on X. We have that
H' ()N [—it(T'X 4)] = & forall € K. (2)
Suppose not. Then 3 #/ € K such that H" (') N[~ (I X A)]5 &. Hence, it follows by Lam-
mal. 2 that [F(z') —~ 3, ]N (—int I') % &F. Which contradicts {1). Therefore (2) holds. Thus, by
Theorem 1.1 and Lemma 1. 3,3 3" €T" ,z* € A" ,with {y*,z" )7 (0,0) such that
{(H (x)y(y" 2" )2 20, foranyr € K,

It follows that
(FCx) 3"y + {G(x)»z" ) 22 {ypsy" ), for any z € K, {3
Due to o€ Ky consequently 3 p€ G {x,) such that p€ (—A). But ° € 4" ,which implies that (p,
z" y<0. On the other hand, to take z=ux,in (3),we may get{yo, ¥ " >+ {frz" Y2 {y0ry" ).
It follows that {p,2" >2=0. So {p,z* y=0. Thus, we have <yp,y">> E{(F{zy), ¥" )+ (G{xp) 2"
>,
Hence, it follows from (3) that inf[{F(z),y" ) F+{G(x) 2" Y ]=<yury" >.
Take again x=x,in (3), we may get
(Yo, v" ) + (Glzp) y2* ) 2= {yary ™ ).
So {G{xe)sz" Y220, we have previously shown that there exists p € G{xo) such that {p,z"y=0.
Thus, inf {G(xedsz"¥=0.
Q.E.D.
Corollary 2.1 Suppose the following:
1) o €K is a weak efficient solution of (F2),
2) D be an invex subset of X (with respect to a function 7: X X X—X). F and G are I'—preinvex
and A—preinvex on D, respectively. Then 3 y. € (F(xs), and y" €*,2" €A™ ,with (y",z")F
{0,0) such that
mIfAF{x), 3" + (Glz)yz 3] = (yosy* 2y
inf{G(z,),2") = 0.
Proof. Let xy,z,€D,A€[0.1]. According to assumption 2),with respect to the same function 7: X
» X—+X, we have
Flz) 4+ (1 — MDF(x) T F(x; + A, z)) + T,
Glx) + (1 — AG(x,) C Glx, + Ax,z:)) + A (4)
Clearly ,
ALF{x) X Glx] + (1 — D[F(xs) X Glz)] =[F(x) + (1 — HF(x)]
X [Glz) + (1 — DG(=)].
Thus, by {4), we get
AH (x)) + (1 — M H (xy) C [Flxy + Axy,x3)) + T'] X [Glaxy + Mz, 250 + A (5)
But the right-hand member of (5) is same as the set F(z;-+A9(x,,22)) X G+ A9z 52:) )+ T
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X A. Hence it {ollows from (5) that AH () + (1 — D H () CH a4+l a0+ D Aveie. H
{x) is "X A—preinvex on D. Now it is clear that feasible set X is invex, it follows that & is "X A—

preinvex on K.
Q.E.D.
We can similarly show the following theorem.
Theorem 2.3 Suppose the fcllowing:
1} 2o € K is a weak efficient solution of (P2),
2) H{(x) is I'X A—preinvex on D,
3) [FIDNK)— 3 ][N —imt Y= (I ,where y.is as in Theorem 2. 1.
Then 3 y*"€0r" 2" €A", with (v*,2" }3(0,0) such that
infep[{(F(x),y"' Y + (G(x)z" Y] = (y,5" 7,
inf{G{xy),z") = Q.
Theorem 2.4 Suppose the following:
1} r, €K,
2} € Flaxy)y and (y" 2" )ED" X A" ,with (y'l »2" )57 (0,0) such that
inf( (F(z),y") + 4G () ,2" 2] = (3, 5" ),
3} 2" € D such that G(z" ) {—iw A)=4.
Then x, is a weak efficient solution of {FP2).
Proof. By assumption 2}, we have (Flx)—yp.y" 1+ (G(x),z" =20, ¥ € D. {8)
First, we prove that ¥* #0. Suppose not, i. e. y* =0. Hence it follows from (6) that
(Gx)yz"} 20, ¥x € D. 7
By assurnption 3), there exists u € G(x') such that —uC i A, let 2z€2Z, then 3 4 >0 such that —
utAzE Aand —u—Az€ A, since z° €A” ,thus
{(—u—+Az,2"y208nd {(—u— Az,2" ) 2= 0. (8)
From (7}, we can get that {a,z" }>=20,hence it follows from (8) that {z,z" >=0,this implies that z*
=0,in contradiction to assumption {2),s0 y* #0. If x, is not a weak efficient solution of {F2),then
J z* €K such that [F{z")—y, ] {—&t D) & ,hence 3 +€ F(z") such that t—y, € (—imz ).
Since y* €I'" and y" #0,using Lemma 1.1 ,we obtain '

it — vy )y <O (9)
Due to x* € K, this implies that there exists g€ G{x" ) such that ¢ € (— A),it follows that
{g,z" ¥y 0 ' {1m

Adding (10) to (3}, we get {t—yy,y" }+ {(g,z" }<C0, which contradicts (6). thus =, is a weak effi-
cient solution of (P2).
Q.E.D
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