The Measure of Technological Progress’s Contribution of Jiangsu Construction Industry Compared with Shanghai and Zhejiang

WU Wei-wei, LI Qi-ming
(Department of Construction and Real Estate, Southeast University, Nanjing 210096)

Abstract: In order to build an innovative construction industry, it is important to firstly measure the current technological progress’s contribution of Jiangsu Construction Industry. Beginning at the meaning of technological progress, this paper calculates the capital elasticity factor and manpower elasticity factor of Jiangsu, Shanghai and Zhejiang based on C–D function and Solow Remain. Then, it calculates the technological progress’s contribution of these three districts. The main conclusion is that Jiangsu is at the stage of scale invariability, and Shanghai is at the scale decreasing stage, and Zhejiang is at the stage of increasing scale. Moreover, from the perspective of annual average technological progress’s contribution, the ranking is Jiangsu (2.096%), Shanghai (0.898%) and Zhejiang (0.683%). It is worried that the increasing quality of three districts’ construction industry are not very good.

Keywords: innovative construction industry; technological progress; solow remain; scale benefit
第1行比较和分析要原因就是推动技术进步的因素是多种多样的。浙三地建筑业取得的成绩为世人瞩目。如江建筑业的技术进步贡献率，有影响的方法相关文献在数学上证明了这种方法提供了一种一致和可行的框架。而且其经济意义明确。例如，文章3.1节用的是该方法，可以得出更为有益的结论。在产出的增量中，本文采用索洛余值法计算和比较江苏苏沪浙建筑业经济增长中技术进步的贡献。常用的理论模型包括前沿面生产函数法和数据包络分析法。虽然此模型存在一定的缺陷，但其将技术进步分为狭义和广义两种含义，使均方估计误差达到最小的生产函数
t。这种广义技术进步模型可以计算出相应的年技术进步贡献率，而且其经济意义明确。本文在1995年至2003年运用该方法求实证验证。表2.1节更详细地分析了39个城市场工业化过程与技术进步的关系。表2.2节列出了生产函数的一般形式是
t，其中的A，L，K分别代表劳动、资本和土地等生产要素。

2.3节中，C—D为均方估计误差达到最小的生产函数
t。这种广义技术进步模型可以计算出相应的年技术进步贡献率。此模型可以用于比较苏沪浙建筑业经济增长中技术进步的贡献率。表2.3节列出了生产函数的一般形式是
t。其中的A，L，K分别代表劳动、资本和土地等生产要素。
3. 重复上述计算过程

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th>L</th>
<th>K</th>
<th>Q</th>
<th>L</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>1,821,803</td>
<td>9</td>
<td>228,2</td>
<td>425,565</td>
<td>721,580</td>
<td>8</td>
</tr>
<tr>
<td>2002</td>
<td>2,199,516</td>
<td>4</td>
<td>248,42</td>
<td>577,010</td>
<td>9</td>
<td>822,273</td>
</tr>
<tr>
<td>2003</td>
<td>2,794,935</td>
<td>4</td>
<td>272,7</td>
<td>604,507</td>
<td>3</td>
<td>1,195,803</td>
</tr>
</tbody>
</table>

方程为

方程

检验和回归系数的显著性检验

检验值为

说明江苏省建筑业

年间的总产值

上海市的劳动投入则在平稳中略有

时期

在

在

期间呈上升趋势

期间增长比较平稳

的估算

和资本产出弹性

得到上海市

按照当年价格计算

期间总体上

江苏省建筑业的劳动产出弹性

上海建筑业总产值增长

代入模型

年比

和资本产出弹性

陈

得到年

的环境下回归计算得到江苏省

计算出每年相对于前一年的技术进步贡献率

表

江苏省和浙江省的劳动投入在这

年

表

江苏建筑业次之

年

而上海市的劳动投入则在平稳中略有

期间

年间呈上升趋势

年

年

间

而上海市的劳动投入则在平稳中略有

年

年

年间

年间

年间

年间

年

年

年间

年

年间

年间

年间

年

年

年间
在评价年份里的均值的概念，可以得出从技术进步系数为L万元
3年相对于起始年份的技术进步贡献率要比用年技术进步贡献率则为L/年。
江苏省各年比表所示，可以求出每年的产出增量及年增长量，进而
年在表中经济技术进步贡献率的计量与比较

<table>
<thead>
<tr>
<th>1</th>
<th>ΔQ</th>
<th>ΔL</th>
<th>ΔK</th>
<th>$\Delta Q/\Delta L$</th>
<th>$\Delta L/\Delta K$</th>
<th>$\Delta K/\Delta Q$</th>
<th>$\Delta K/\Delta L$</th>
<th>$\Delta K/\Delta Q/\Delta L$</th>
<th>$\Delta A/A$</th>
<th>$A(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>1</td>
</tr>
<tr>
<td>1996</td>
<td>476,845</td>
<td>111.29</td>
<td>95,856.5</td>
<td>0.887</td>
<td>862</td>
<td>11.171</td>
<td>145</td>
<td>0.740</td>
<td>635</td>
<td>0.146</td>
</tr>
<tr>
<td>1997</td>
<td>57,549</td>
<td>6</td>
<td>-4.26</td>
<td>32,437.3</td>
<td>0.056</td>
<td>752</td>
<td>-0.020</td>
<td>2</td>
<td>0.160</td>
<td>882</td>
</tr>
<tr>
<td>1998</td>
<td>124,591</td>
<td>3</td>
<td>6.03</td>
<td>31,925.2</td>
<td>0.116</td>
<td>266</td>
<td>0.029</td>
<td>18</td>
<td>0.122</td>
<td>703</td>
</tr>
<tr>
<td>1999</td>
<td>133,784</td>
<td>6</td>
<td>7.29</td>
<td>41,587.3</td>
<td>0.111</td>
<td>841</td>
<td>0.034</td>
<td>27</td>
<td>0.141</td>
<td>718</td>
</tr>
<tr>
<td>2000</td>
<td>208,856</td>
<td>3</td>
<td>7.49</td>
<td>32,579.6</td>
<td>0.157</td>
<td>037</td>
<td>0.034</td>
<td>05</td>
<td>0.097</td>
<td>242</td>
</tr>
<tr>
<td>2001</td>
<td>282,962</td>
<td>3</td>
<td>7.49</td>
<td>57,948</td>
<td>0.183</td>
<td>88</td>
<td>0.003</td>
<td>253</td>
<td>0.157</td>
<td>631</td>
</tr>
<tr>
<td>2002</td>
<td>377,712</td>
<td>5</td>
<td>20.22</td>
<td>151,445</td>
<td>0.207</td>
<td>329</td>
<td>0.088</td>
<td>606</td>
<td>0.355</td>
<td>87</td>
</tr>
<tr>
<td>2003</td>
<td>595,419</td>
<td>24.28</td>
<td>27,496</td>
<td>4</td>
<td>0.270</td>
<td>705</td>
<td>0.097</td>
<td>738</td>
<td>0.047</td>
<td>653</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>ΔQ</th>
<th>ΔL</th>
<th>ΔK</th>
<th>$\Delta Q/\Delta L$</th>
<th>$\Delta L/\Delta K$</th>
<th>$\Delta K/\Delta Q$</th>
<th>$\Delta K/\Delta L$</th>
<th>$\Delta K/\Delta Q/\Delta L$</th>
<th>$\Delta A/A%$</th>
<th>$A(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>49,263</td>
<td>5</td>
<td>-4.11</td>
<td>21,809</td>
<td>0.125</td>
<td>86</td>
<td>-0.070</td>
<td>38</td>
<td>0.272</td>
<td>785</td>
</tr>
<tr>
<td>1997</td>
<td>111,736</td>
<td>4.26</td>
<td>7,118.6</td>
<td>0.253</td>
<td>354</td>
<td>0.078</td>
<td>467</td>
<td>0.069</td>
<td>956</td>
<td>0.199</td>
</tr>
<tr>
<td>1998</td>
<td>33,485</td>
<td>9</td>
<td>-18.41</td>
<td>5,929</td>
<td>0.060</td>
<td>617</td>
<td>-0.314</td>
<td>43</td>
<td>0.054</td>
<td>457</td>
</tr>
<tr>
<td>1999</td>
<td>-17,508</td>
<td>4</td>
<td>-1.61</td>
<td>5,356</td>
<td>0.030</td>
<td>04</td>
<td>-0.040</td>
<td>11</td>
<td>0.046</td>
<td>654</td>
</tr>
<tr>
<td>2000</td>
<td>54,052</td>
<td>9</td>
<td>-3.43</td>
<td>0.796</td>
<td>0.095</td>
<td>113</td>
<td>-0.089</td>
<td>02</td>
<td>0.006</td>
<td>629</td>
</tr>
<tr>
<td>2001</td>
<td>99,224</td>
<td>3</td>
<td>-0.2</td>
<td>12,427</td>
<td>0.159</td>
<td>433</td>
<td>-0.005</td>
<td>7</td>
<td>0.135</td>
<td>814</td>
</tr>
<tr>
<td>2002</td>
<td>100,692</td>
<td>2</td>
<td>7.07</td>
<td>97,920</td>
<td>0.139</td>
<td>544</td>
<td>0.202</td>
<td>579</td>
<td>0.712</td>
<td>737</td>
</tr>
<tr>
<td>2003</td>
<td>373,530</td>
<td>4</td>
<td>8.55</td>
<td>53,648</td>
<td>0.454</td>
<td>266</td>
<td>0.203</td>
<td>717</td>
<td>0.227</td>
<td>993</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>ΔQ</th>
<th>ΔL</th>
<th>ΔK</th>
<th>$\Delta Q/\Delta L$</th>
<th>$\Delta L/\Delta K$</th>
<th>$\Delta K/\Delta Q$</th>
<th>$\Delta K/\Delta L$</th>
<th>$\Delta K/\Delta Q/\Delta L$</th>
<th>$\Delta A/A%$</th>
<th>$A(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>1</td>
</tr>
<tr>
<td>1996</td>
<td>482,616</td>
<td>3</td>
<td>78.33</td>
<td>116,783</td>
<td>1.366</td>
<td>627</td>
<td>1.258</td>
<td>007</td>
<td>1.252</td>
<td>796</td>
</tr>
<tr>
<td>1997</td>
<td>41,076</td>
<td>-2.89</td>
<td>41,918</td>
<td>0.049</td>
<td>118</td>
<td>-0.020</td>
<td>3</td>
<td>0.196</td>
<td>91</td>
<td>-0.201</td>
</tr>
<tr>
<td>1998</td>
<td>65,174</td>
<td>8.17</td>
<td>19,134</td>
<td>0.074</td>
<td>825</td>
<td>0.058</td>
<td>587</td>
<td>0.075</td>
<td>954</td>
<td>-0.011</td>
</tr>
<tr>
<td>1999</td>
<td>185,751</td>
<td>9.23</td>
<td>30,038</td>
<td>0.197</td>
<td>078</td>
<td>0.062</td>
<td>525</td>
<td>0.110</td>
<td>766</td>
<td>0.057</td>
</tr>
<tr>
<td>2000</td>
<td>255,484</td>
<td>14.2</td>
<td>25,957</td>
<td>0.226</td>
<td>437</td>
<td>0.090</td>
<td>532</td>
<td>0.086</td>
<td>335</td>
<td>0.117</td>
</tr>
<tr>
<td>2001</td>
<td>384,683</td>
<td>12.35</td>
<td>48,839</td>
<td>0.277</td>
<td>997</td>
<td>0.072</td>
<td>201</td>
<td>0.143</td>
<td>922</td>
<td>0.090</td>
</tr>
<tr>
<td>2002</td>
<td>514,541</td>
<td>15.44</td>
<td>46,829</td>
<td>0.290</td>
<td>956</td>
<td>0.084</td>
<td>188</td>
<td>0.124</td>
<td>566</td>
<td>0.134</td>
</tr>
<tr>
<td>2003</td>
<td>844,287</td>
<td>44.1</td>
<td>95,004</td>
<td>0.369</td>
<td>816</td>
<td>0.221</td>
<td>786</td>
<td>0.224</td>
<td>736</td>
<td>0.087</td>
</tr>
</tbody>
</table>
3.3.3

（1）

1995—2003

4.1

4.2

1997 2002

http://qks.cqu.edu.cn