体内张拉成形空间网格结构径向迭代找形算法

王 成^{1,2},张毅刚²

(1. 中国建筑科学研究院,北京 100013; 2. 北京工业大学 空间结构研究中心,北京 100124)

摘 要:针对体内张拉成形空间网格结构工程应用需要,在几何位移迭代法的基础上提出了一种仅 对跨度方向,即径向坐标迭代计算的简易结构找形方法—径向迭代找形算法,并通过一个 80 m 跨 的体内张拉成形空间网格结构实例,对其找形过程特点做了细致的对比分析,结果表明该法找形速 度快、迭代计算简单,经过 6 次迭代,坐标误差的最大绝对值仅为 $\Delta R = 7.03E - 04 \text{ m}, \Delta \theta = 6.7E - 10^{\circ}, \Delta Z = 0.104 \text{ m}, 通常情况下完全可以满足实际施工要求,而且可以确保结构成形分析和受荷分$ 析的连续性和完整性,非常适合于体内张拉成形空间网格结构形态研究。

关键词:网格结构;径向迭代;找形分析;体内预应力

中图分类号:TU393 文献标志码:A

文章编号:1674-4764(2009)02-0045-06

Displacement-iteration Form-finding Arithmetic in R Coordinates of ISFSL

WANG Cheng^{1,2}, ZHANG Yi-gang²

(1. China Academy of Building Research, Beijing 100013, P. R. China; 2. Space Structures Research Center, Beijing University of Technology, Beijing 100124, P. R. China)

Abstract: In order to put the Internal Stretch Forming Space Lattice Structure (ISFSL) into practice, based on the Geometrical Displacement-iterative Method, the Displacement-iteration Form-finding Arithmetic in R Coordinates is proposed, in which only the displacement-iteration is exerted on span coordinates of ISFSL. A detailed study on the form-finding process is carried out, which is based on an ISFSL with a long span of 80m. The result shows that this arithmetic is very simple with great efficiency and working speed. When the sixth iteration is accomplished, the maximal absolute value of error of coordinates is only as follows: $\Delta R = 7.03E - 04m$, $\Delta \theta = 6.7E - 10^{\circ}$, $\Delta Z = 1.04E - 01m$, which is satisfied to the engineeringoriented need. The arithmetic also ensures the continuum and integrality of the structural forming and loading analysis, and is quite fit to the form-finding study of ISFSL.

Keywords: Shells structures; radial iteration; form-finding analysis; internal-prestress

体内张拉成形空间网格结构形如球面网壳^[1], 由径向辐射型布置的上弦、下弦、腹杆和环向连接构 件组成,其中上弦为钢管梁,下弦为长度方向节间预 留缝隙钢管(内穿预应力高强钢索),竖向腹杆为钢 管,且与上下弦铰接,径向布置的上下弦汇交于中央 的上下环,周边外端2到3个网格设置刚臂 (图1)^[2]。从工程应用的角度出发,将体内张拉成 形空间网格结构受力过程中涉及的状态定义如下: 1)零状态,即体系在无自重、无预应力作用时的放样 状态;2)初始态,即体系在自重和预应力作用下的自 平衡状态;3)荷载态,即体系在初始态的基础上,承 受其他外荷载时的受力状态^[3]。体内张拉成形空间 网格结构的初始态几何一般由设计者给定,因此,零 状态放样几何的确定是体内张拉成形空间网格结构

收稿日期:2008-10-16

基金项目:国家自然科学基金重大研究计划重点项目(90715034)

作者简介:王成(1970-),男,中国建筑科学研究工院高级工程师,主要从事大跨度空间结构研究,(E-mail) c_wang@emails.bjut.edu.cn。

找形分析的重要内容之一^[4]。径向迭代找形算法是 在几何位移迭代法基础上的一种简化实用的体内张 拉成形空间网格结构形态分析方法。

图1 体内张拉成形空间网格结构

几何位移迭代法沿跨度方向简易算 法—径向迭代找形算法

几何位移迭代法的基本原理就是首先要针对结构受力特点假定结构零状态几何,然后在其下弦索中施加预应力,当下弦索由下垂向上变为水平时(同时上弦由水平变到起拱状态)^[5],停止施加预应力, 在此基础上根据与初始态的对比进行反复迭代,直 至满足要求为止。这种方法的简要步骤如下^[6]:

设{*X*、*Y*、*Z*} 为初状态几何,{*X*、*Y*、*Z*}。为 零状态放样几何。

 1)首先根据体内张拉成形空间网格结构的几 何、受力特点,假定零状态几何,{X、Y、Z}ok,
 k = 1(设为初始零状态);

2)在下弦索施加预应力,当下弦索由下垂向上 变为水平时(竖向坐标满足要求),停止施加预应力, 进而计算出几何为 { X, Y, Z }_{0k} 的结构节点位移 {U}_k, k = 1;

3) 计算 { *X*、*Y*、*Z* }_{*k*} = { *X*、*Y*、*Z* }_{0*k*} + {*U*}_{*k*}, 令 Δ = { *X*、*Y*、*Z* } - { *X*、*Y*、*Z* }_{*k*};

4) 判别 Δ 是否满足给定的精度。若满足,则 { X, Y, Z $}_{ok}$ 即为所求的零状态几何坐标;

若不满足,则令 { X, Y, Z }_{0,k+1} = { X, Y, Z }_{0k} + Δ ,转第二步,并令 k = k + 1;

5)由以上步骤得出零状态的几何参数后,将施 加预应力值赋予下弦索同时可得出初状态预应力分 布^[7-8]。

几何位移迭代法要求对初始零状态几何的 X 、

Y和Z3个坐标值均进行连续迭代计算,得到最终的非常精确的零状态几何坐标(对于文中以下算例, 迭代计算误差仅为10⁻¹⁰m)。但实际上,由于很多的主客观条件影响(如:设计要求、施工现场条件、人员和张拉设备精度等),很难实现计算误差要求,而且常常是计算误差与施工误差相差得太多^[9-10],计算误差在满足一定要求的情况下往往可忽略不计。

文中研究体内张拉成形空间网格结构选用柱坐 标 $\{R, \theta, Z\}$,在其成形过程中以竖向(Z) 和跨度方 向即径向(R)的位移为主,环向(θ)位移很小,几乎为 零可以不予考虑,由图 5-10 可知,初始零状态经过 一次迭代计算(初始零状态的下弦索施加预应力,当 下弦索由下垂向上变为水平时,停止施加预应力,进 而计算出该时刻的结构几何 { R, θ, Z }₀₁) 后所得到 的结构几何($\{R, \theta, Z\}_{01}$)与要求的初状态坐标 $\{R, \}_{01}$ θ 、Z 〉 差的绝对值最大的是: $\Delta Z_{608} = -0.103 \text{ m}$ 、 $\Delta R_{617} = -0.090\ 61\ \mathrm{m}$ 、 $\Delta \theta_{627} = 5.77\mathrm{E} - 10^{\circ}$,所以对 常见的大跨体内张拉成形空间网格结构找形,几何位 移迭代法可以不考虑 θ 向迭代计算,仅对R和Z向进 行迭代修正计算,同时对环向(θ) 位移进行必要的校 核。而几何位移迭代法简易算法则是根据工程实际 要求对几何位移迭代法做进一步的简化[11],有以下 几种选择:1) 在竖(Z) 向迭代修正计算, 对环(θ) 向 和径(R)向位移进行必要的校核,2)在跨度方向即 $\mathcal{Q}(R)$ 向迭代修正计算,对环(θ) 向和竖(Z) 向位移 进行必要的校核。

几何位移迭代法沿结构跨度方向(R向)的迭 代简易找形算法(以下称"径向迭代找形算法")是在 几何位移迭代法的基础上,结合实际施工技术水平, 在跨度方向即径(R)向迭代修正计算,对环(θ)向和 竖(Z)向位移进行必要的校核^[12],以求在一定程度 上简化结构找形过程,而且得到最终的满足误差精 度的零状态几何坐标。

2 算例分析

2.1 初始条件

表1 杆件截面特性

截面特性	上弦梁、刚臂 和中心环梁	腹杆、侧 向撑杆	下弦	索
宽度/mm	350			
高度/mm	750			
壁厚/mm	30	8	16	
单根直径/mm		299	203	7
根数				37
面积/cm ²	6.24	0.731 36	0.9079	0.142 4
弹性模量/GPa	206	206	206	195

图 2 体内张拉成形空间网格结构初状态模型

作为一种混合空间大跨结构形式,体内张拉成 形空间网格结构没有相同算例可以对比,本文建立 了一个跨度 80 m 的体内张拉成形空间网格结构目 标状态(初状态)模型,杆件截面尺寸及弹性模量见 表 1,其模型图形式如图 2,由于结构对称的原因,本 文只截出其中的 1/4 部分进行研究,节点编号见图 3,由于结构节点数目太多,本文只选取其中沿径向 不同跨度处系列节点(节点 601~627)进行找形对 比分析^[13],节点初状态坐标(选用柱坐标 $\{R, \theta, Z\}$)见表 2,结构周圈端部的刚臂为 3 个上 弦节间,结构的周圈支座为滑动支座,只允许支座沿 着水平径向自由滑动。上弦及刚臂部分采用方钢管 截面,下弦及腹杆采用圆钢管,钢材均采用 Q 235_b, 钢材的线膨胀系数为 1.2×10^{-5} 。

图 3 体内张拉成形空间网格结构节点编号

上弦节点初状态坐标		下弦节点初状态坐标					
编号	R/m	θ/(°)	Z/m	编号	R/m	$\theta/(^{\circ})$	Z/m
602	40	-43.2	6.016	601	40	-43.2	4.016
603	36.9514	-43.2	6.607 53	615	38	-43.2	4.016
604	33.894	-43.2	7.152 13	616	35	-43.2	4.016
605	30.828 6	-43.2	7.649 66	617	32	-43.2	4.016
606	27.755 9	-43.2	8.100 00	618	29	-43.2	4.016
607	24.6767	-43.2	8.503 06	619	26	-43.2	4.016
608	21.591 6	-43.2	8.85873	620	23	-43.2	4.016
609	18.501 5	-43.2	9.166 93	621	20	-43.2	4.016
610	15.406 9	-43.2	9.427 59	622	17	-43.2	4.016
611	12.308 7	-43.2	9.640 64	623	14	-43.2	4.016
612	9.207 65	-43.2	9.806 04	624	11	-43.2	4.016
613	6.104 38	-43.2	9.92374	625	8	-43.2	4.016
614	3	-43.2	9.99274	626	5	-43.2	4.016
				627	2	-43.2	4.016

表2 节点初状态坐标

表3 节点初始零状态坐标

上弦节点初始零状态几何坐标			下弦节点初始零状态几何坐标				
编号	R/m	$\theta / (^{\circ})$	Z/m	编号	R/m	$\theta/(^{\circ})$	Z/m
602	40.266	-43.2	5.977	601	40.662	-43.2	4.016
603	37.161	-43.2	5.977	615	38.705	-43.2	3.663
604	34.055	-43.2	5.977	616	35.715	-43.2	3.124
605	30.950	-43.2	5.977	617	32.688	-43.2	2.578
606	27.844	-43.2	5.977	618	29.667	-43.2	2.116
607	24.739	-43.2	5.977	619	26.633	-43.2	1.699
608	21.633	-43.2	5.977	620	23.587	-43.2	1.327
609	18.528	-43.2	5.977	621	-20.53	-43.2	1
610	15.422	-43.2	5.977	622	17.465	-43.2	0.719
611	12.310	-43.2	5.977	623	14.39	-43.2	0.481
612	9.211	-43.2	5.977	624	11.309	-43.2	0.29
613	6.106	-43.2	5.977	625	8.224	-43.2	0.145
614	3.000	-43.2	5.977	626	5.132	-43.2	0.046
				627	2.000	-43.2	0.000

2.2 确定初始零状态几何

根据体内张拉成形空间网格结构的受力分析可 以知道,上弦在结构成形过程中由水平的直线梁变 为拱形的曲线梁,产生较大弯曲变形,是结构成形过 程中的主要受力构件,它主要承受弯矩,目分布沿径 向(跨度方向)较为均匀,因而主要产生弯曲变形,轴 向变形很小。刚臂(刚臂竖向腹杆、刚臂上弦和刚臂 下弦)应力应变很小,几乎发生刚体转动且转动很 大,腹杆(不含刚臂腹杆)仅受轴向力作用,且数值很 小,轴向变形相应很小,下弦索力较大,沿轴向产生 明显的缩短(下弦索由下垂向上变为水平)[14],据此 假设上弦及腹杆长度基本不变,仅发生刚体位移或 转动(成形过程表现为上弦由水平直线变为向上拱 形曲线),下弦轴向产生较大应变(成形过程表现为 由向下拱形曲线变为水平直线),另外,由于结构成 中心对称特点,而且成形过程中对称施加预应力, θ 向位移几乎为零,据此可以初步确定初始零状态几 何 $\{R, \theta, Z\}_{01}$,具体见表 3,结构整体模型图见图 4。

(b)模型侧面图

图 4 体内张拉成形空间网格结构初始零状态模型

2.3 迭代找形分析

在确定初始零状态几何 $\{R, \theta, Z\}_{01}$ 的基础上, 按照前述几何位移迭代法沿结构跨度方向 $(R \cap)$ 的 迭代简易找形算法对结构进行迭代分析,进而确定 结构设计的零状态几何,并对该方法的收敛速度及 收敛误差进行分析(图 5-10)。

图 5 是上弦节点 Z 坐标迭代收敛分布图,由图 可知,在确定初始零状态几何{R、θ、Z} on的基础上, 对结构反复施加预应力进行迭代的过程中,在不同 次数的迭代完成时,结构上弦节点 Z 坐标与初状态 坐标的差距沿跨度(径向)分布特点几乎一致,图 6 是上弦节点 Z 坐标迭代收敛效果图,本图只选取了 4 个代表节点(刚臂节点 603、刚臂与中间部分交接 节点 605、1/4 跨节点 608 和跨中节点 613)在不同的 迭代次数完成后的收敛情况。

由图 5、6 可知,对于体内张拉成形空间网格结构节点 Z向坐标而言,由于几何位移迭代法 R 向简易算法仅仅在初始零状态几何 $\{R, \theta, Z\}_{01}$ 的基础上,对 R 坐标进行迭代计算,而结合结构受力得到的初始零状态几何 $\{R, \theta, Z\}_{01}$ 的 Z 坐标在迭代分析过程中始终保持不变,所以其成形后各点的 Z 向坐标与初状态 Z 向坐标的差值(误差)在 6 次迭代过程中几乎保持相对的恒定(图 5、6 所示),但由于受到 R 向坐标计算修正的影响,该差值在 6 次迭代过程中也稍微有一点点变化。

对于体内张拉成形空间网格结构节点 Z 向坐标 而言,几何位移迭代法 R 向简易算法找形迭代收敛 效果不明显,但由于该简易算法所假定的初始零状 态几何极为合理,由图 5、6 可以发现初始零状态几 何基础上的结构仅仅通过一次成形迭代,成形后的 节点 Z 向坐标与初状态Z 向坐标的差值就变得非常 小了,(第 2 次到第 6 次迭代对 Z 向坐标基本无影 响),第 1 次迭代成形后的节点 Z 向坐标与初状态Z 向坐标 的 差 值 最 大 值 (绝 对 值 最 大) 仅 为 0.103 m(节点 608),约为跨度的 0.1%,最小值(绝 对值最小)为-0.219E-3 m(节点 602),约为跨度 的 0.000 3%。如果考虑到施工现场条件、人员和张 拉设备精度等,可以接受这种程度的误差,那么从 Z 向坐标找形来说,径向迭代找形算法是一种适合的 选择。

图 7 是节点 R 坐标迭代收敛分布图,在初始零 状态几何{R,θ,Z}₀1 的基础上,通过对结构反复施加 预应力进行找形迭代,对于不同次数的迭代完成时, 结构上下弦节点 R坐标与初状态R坐标的差距沿跨 度(径向)分布情况特点各异,图 8、9分别是上、下弦 节点 R坐标迭代收敛对比图,同 Z 向坐标研究相类 似,这里也只选取了 4 个代表位置的节点(刚臂节点 603 和 616、刚臂与中间部分交接节点 605 和 617、 1/4跨节点 608 和 621、跨中节点 613 和 626)在不同 的迭代次数完成后的收敛情况。

图9 下弦节点R坐标迭代收敛对比

由图 7-9可知,与 Z 向坐标不同,对于体内张 拉成形空间网格结构节点 R 向坐标而言,径向迭代 找形算法找形非常精确,第 2 次成形迭代完成后,节 点 R 向坐标与初状态 R 向坐标的差值最大(绝对值 最大) 仅为-0.003 32 m(节点 617),第 3 次成形迭 代后,与初状态 R 向坐标的差值最大为 8E-5 m(节 点 620),而第 6 次成形迭代完成后,与初状态 R 向坐 标的差值几乎为零。另外从结构找形收敛速度的角 度来看,结构仅仅通过 3 次几何位移迭代就达到了 R 向坐标的误差值最大仅为 8E-5 m 的精度,所以找 形效果明显且速度很快。

图 10 是节点 θ 坐标迭代收敛分布图,首先由表 2,3可知节点初始零状态几何坐标的 θ 坐标 (-43.2°) 与目标要求的初状态 θ 坐标相同,再由图 10可以综合得出体内张拉成形空间网格结构找形过 程中θ向位移非常小,几乎可以忽略不计,虽然结构 成形后各点的 θ 向坐标与初状态 θ 向坐标的差值(误 差)在6次迭代过程中有一定的变化(图10),但最大 差值(绝对值最大) 仅为一6.7E-10°(节点 627),不 过其沿跨度方向的变化规律却很显然,由于结构对 称的原因,图10仅仅表达的是半跨节点(包含半跨 上弦和半跨下弦节点),如果将全跨表现在图中,就 会发现成形迭代后 θ 向坐标与初状态 θ 向坐标的差 值(绝对值)沿跨度呈现出由跨中较大向支座快速递 减直至为零的趋势,这一特点主要是由于体内张拉 成形空间网格结构构造特点确定的,结构的周圈支 座为滑动支座,只允许支座沿着水平径向(R向)自 由滑动,而严格约束了 θ 向位移。

3 结束语

作为一种大跨空间混合结构形式,体内张拉成 形空间网格结构形态研究特别是实用找形方法的研 究对于该结构的推广应用极为重要^[15],本文根据体 内张拉成形空间网格结构成形受力特点和工程实际 施工条件,在几何位移迭代法找形方法的基础上,提 出了一种新方法一径向迭代找形算法,该方法一方 面继续保持了形态分析结构的完整性(可以在此基 础上连续进行荷载态的分析),另一方面其迭代计算 简单、找形速度快,一般情况下完全可以满足实际施 工要求,所以是体内张拉成形空间网格结构现场实 际工程形态研究及初步概念设计阶段的一种较为适 宜和简便的找形方法。

参考文献:

[1]张毅刚,王成,谭争光,等. 一种新型的空间结构形式— 体内张拉成形空间网格结构[J]. 工业建筑,2007 (sup.):71-74.

ZHANG YI-GANG, WANG CHENG, TAN ZHENG-

GUANG, et al. A novel spatial structures-internalprestressed reticulated space structure through posttensioning [J]. Industrial Construction, 2007 (sup.):71-74.

- [2] 张毅刚,王成. 辐射型体内张拉成形空间网格结构:中 国 ZL200620113271.9[P]. 2007-05-09.
- [3] M. J. CLARKE, G. J. HANCOCK. Test and nonlinear analyses of small-scale stressed-arch frames [J]. Journal of Structural Engineering, 1995,121(2):187-200.
- [4] 胡加珠,吕令毅.张拉结构的找形方法评述[J].建筑科学,2002,18(5):20-24.
 HU JIA-ZHU, LV LING-YI. Form-finding methods of tensile structures[J]. Building Science, 2002, 18(5): 20-24.
- [5]杨睿,董石麟,倪英戈.预应力张弦梁结构的形态分析—
 改进的逆迭代法[J].空间结构.8(4),2002:29-34.
 YANG RUI, DONG SHI-LING, NI YING-GE. Form finding analysis of prestressed beam string structures-modifiedinverse-iteration metuod[J]. Spatial Structures.
 2002, 8(4): 29-34.
- [6]余志祥,赵雷.张力结构形态确定的改进方法[J].四川 建筑科学研究.2005,31(1):34-37. YU ZHI-XIANG, ZHAO LEI. An improved form finding method for tensile structures [J]. Sichuan Buildinn Science. 2005,31(1):34-37.
- [7]张其林. 索和膜结构[M]. 上海:同济大学出版社, 2002.

- [8]万红霞. 索和膜结构形状确定理论研究[D]. 武汉: 武 汉理工大学,2004:93-97.
- [9]马美玲,张弦梁结构找形和受力性能研究[D]. 杭州:浙 江大学建筑工程学院,2004:26-30.
- [10] 张毅刚,薛素铎,杨庆山,等.大跨空间结构[M].北京: 机械工业出版社,2005:312-370.
- [11] M. J. CLARKE, G. J. HANCOCK. A comparison of finite element nonlinear analysis with tests of stressed arch frames [C]//Tenth International Specialty Conference on Cold-formed Steel Structures, St Louis, Missouri, USA,1990; 605-636.
- [12] ZHANG YI-GANG, WANG CHENG, TAN ZHENG-GUANG, et al. Study on forming process of the internalprestressed reticulated space structure through posttensioning[C]//IASS. Intl. Symp., 2007:304-312.
- [13] G J HANCOCK, P W KEY, OLSEN C J. Structural behavior of a strarch structure system [C]//9th Institute Speciality Conference St Louis 1988 : 505-526.
- [14] M J CLARKE, G J HANCOCK. On the design of the top chord of stressed-arch frames [J]. Journal of Structural Engineering, 1995,121(2):201-213.
- [15] 钱若军,杨联萍.张力结构的分析·设计·施工[M].南 京:东南大学出版社,2003:363-380.

(编辑 陈 蓉)

(上接第 37 页)

- [10] 陈宗平,薛建阳,赵鸿铁,等. 型钢混凝土异形柱抗震性 能试验研究[J].建筑结构学报,2007,28(3):53-61.
 CHEN ZONG-PING, XUE JIAN-YANG, ZHAO HONG-TIE, et al. Experimental study on seismic behavior of steel reinforced concrete special-shaped columns[J]. Journal of Building Structures, 2007,28 (3):53-61.
- [11] JGJ 138-2001. 型钢混凝土组合结构技术规程[S].
- [12] 朱伯龙. 结构抗震试验[M]. 北京: 地震出版社, 1989.
- [13] 王来,王铁成,陈倩. 低周反复荷载下方钢管混凝土框架 抗震性能的试验研究[J]. 地震工程与工程振动,2003, 23 (3): 113-117.

WANG LAI, WANG TIE-CHENG, CHEN QIAN. Experimental study on seismic performance of concretefilled rectangular tubular frame under low-reversed cyclic loading [J]. Earthquake Engineering and Engineering Vibration, 2003, 23 (3): 113-117.

[14] 王雪芳,郑建岚. 自密实高强混凝土框架结构的抗震性 能研究[J]. 福州大学学报,2004,32 (2): 173-177. WANG XUE-FANG, ZHENG JIAN-LAN. Study of earthquake resistance behavior of self-compacting highstrength concrete frame [J]. Journal of Fuzhou University, 2004, 32 (2): 173-177.

- [15] HAN S W, KWON O S, LEE L H. Evaluation of the seismic performance of a three-story ordinary momentresisting concrete frame[J]. Earthquake Engineering and Structural Dynamics, 2004, 33(6):219-231.
- [16] 赵艳静,李忠献,陈云霞.四级抗震等级时钢筋混凝土异 形柱轴压比限值的研究[J].建筑结构学报,2004,25 (3):58-62.

ZHAO YAN-JING, LI ZHONG-XIAN, CHEN YUN-XIA. Research on limit values of axial compression ratios of specially shaped RC columns in case of 4th aseismic grade [J]. Journal of Building Structures, 2004, 25(3): 58-62.

(编辑 胡英奎)