输电塔一线体系覆冰作用非线性分析

晏致涛¹,刘操兰²,李正良¹,汪之松¹

(1. 重庆大学 土木工程学院,重庆 400045; 2. 中国电力科学研究院,北京 100192)

摘 要:在重冰区,高柔大跨越输电塔-线体系在覆冰、风载等作用下具有强烈的耦合特性和非线性特征。推导了绝缘子、索以及边界条件的刚度表达式,以向家坝-上海±800 kV 特高压直流输电 线路为例,建立了输电塔、导线、绝缘子以及边界条件的简化数值分析模型。对大跨越输电塔-线体 系进行了7种工况下的静力非线性分析。分析表明,在导线均匀覆冰及风荷载作用下,铁塔构件的 P-Δ效应较小;在不均匀覆冰工况下,导线不平衡荷载对铁塔产生扭转效应,铁塔受压支座节点和 最大悬臂处单元的轴向压力和弯矩具有较明显的 P-Δ 效应,应考虑荷载非线性的不利影响。 关键词:输电塔;导线;不均匀覆冰;几何非线性;P-Δ 效应 中图分类号:TU311.3; TM753 文献标志码:A 文章编号:1674-4764(2010)01-0036-06

Nonlinear Analysis of Elecrictrical Transmission Tower-Line System with Icing Loads

YAN Zhi-tao¹, LIU Cao-lan², LI Zheng-liang¹, WANG Zhi-song¹

(1. College of Civil Engineering, Chongqing University, Chongqing 400045, P. R. China; 2. China Electric Power Research Institute, Beijing 100192, P. R. China)

Abstract: The intense coupled and nonlinear behaviors were observed on the tall long-span tower-line systems which were under the icing and wind loads in heavy icing areas. A set of stiffness equations of insulator, conductor and boundary conditions was deduced. Taking the ± 800 kV UHV DC transmission line from Xiangjiaba to Shanghai as an example, the simplified numerical model of transmission tower, conductor, insulator and constraint was developed. The long span transmission tower-line system models under seven loads conditions were analyzed by static nonlinear methods. It was found that the $P-\Delta$ effect of tower components was small when the covered ice was uniformly distributed. The unbalanced wire loads on the tower would lead to twist effect when the covered ice was uneven distributed. The axial forces, moments at restraint nodes and the longest cantilever member were greatly affected by the $P-\Delta$ effect, under which the unfavorable effect on the structure should be considered.

Key words: power transmission tower; cable; uneven icing; geometric nonlinearity; P- Δ effect

输电塔-线体系是由高耸的杆塔结构和导线连接组成的一种高柔结构,在高海拔、覆冰等恶劣条件下,存在大悬臂横担引起的几何非线性大变形以及导线的脱冰、断线等引起的导线跳跃和对输电塔的

冲击作用等问题。由于输电塔的高耸、柔性性质,几 何非线性影响不容忽视^[1-2]。

输电塔塔身主要角柱一般为连续受压压杆,存 在杆件的次弯矩作用,即存在 P-Δ 效应。El-

收稿日期:2009-09-20

基金项目:国家自然科学基金资助(50708118,50678181);重庆市自然科学基金资助(CSTC,2007BB0133);重庆大学青年 教师基金资助(0218001104305)

作者简介:晏致涛(1978-),男,副教授,博士,主要从事输电塔线体系相关研究,(E-mail)yanzhitao@cqu.edu.cn。

Ghazalyt H A^[3]以 KUWAIT 地区的 1 个输电塔为 例,采用 ANSYS 和 STAAD-III 计算软件包建立了 1 个二维耐张塔的计算模型,分析了风荷载下塔受 力的几何非线性影响。Da Silva^[4]对目前输电塔设 计的模型进行了分析比较,重点分析了纯桁架模型 和梁-杆模型之间的差别。Prasad Rao^[5]针对典型 的等肢角钢塔进行了分析,重点考察了风荷载作用 下结构几何非线性的影响。邓洪州^[6]、Ji-Hun Park^[7]通过试验研究了梁单元和杆单元模型的区 别,分析了梁单元模型中次应力的影响。Roy S^[8]也 从理论上分析了梁单元中次应力的影响。

上述相关研究基本上是对单塔的几何非线性进行分析,并且没有考虑塔身扭转产生的荷载非线性。

越来越多的研究关注输电塔一导线体系的整体 耦合受力分析。Ronaldo C^[9]、Kudzys^[10]分析了风 荷载作用下输电塔的动力特性和稳定性。 Wahba^[11]对拉线天线塔进行了数值模拟,分析了拉 线塔一线整体模型与单塔模型在风荷载、覆冰荷载 下的力学性能的差别。胡松^[12]、李宏男^[13]、梁峰^[14] 等分别讨论了输电塔-线体系在风荷载、地震荷载下 的动力特性与建模。上述研究大都集中在整体力学 性能方面,基本没有涉及铁塔非线性内容,尤其是荷 载非线性的影响没有考虑。

以下将建立较准确的输电塔-线体系分析模型, 考虑输电塔、导(地)线以及绝缘子的非线性力学特性,实现体系在各种覆冰工况下考虑几何非线性的 力学分析,讨论不均匀覆冰引起塔身扭转的非线性 影响。

1 输电塔-线体系力学模型

1.1 输电塔力学模型

以往的研究表明,由于杆件在节点连接处刚度 增强,次应力问题在设计中应该考虑,尤其是4根角 柱和大悬臂的主要杆件,其实际上就是连续梁结构, 按梁单元进行有限元计算比按杆单元计算的结果与 试验值更为接近。本次研究的输电塔结构构件主要 为单边连接等肢角钢,在进行非线性静力分析时,对 主要的拉压杆件如角柱、悬臂上下弦采用三维空间 梁单元模型,对主要的"X"撑、"K"撑等也采用刚性 节点,并考虑连接偏心的影响根据现行规范对横向 支撑进行刚度上的修正^[5]。次级的小支撑在分析中 内力很小,往往通过构造决定,采用轴向受力模型。

1.2 导线力学模型

对于导(地)线索单元,已有许多研究表明采用 悬链线模型计算输电线是精确的^[15],因此,采用悬 链线单元模拟导(地)线。空间悬链线刚度是一个隐 式表达式,可通过迭代求得。由于输电塔线体系是 一个多跨体系,在分析时,往往只取出其中的几跨。 因此,确定相邻导线的轴向刚度和侧向刚度是相当 有必要的。为简便起见,在边界处相邻跨的导线采 用抛物线模型,这样,便可以得到导线刚度的显示表 达式。导线的轴向刚度 K_{da} 为

$$\frac{1}{K_{\rm da}} \approx \frac{l}{EA} + \frac{q^2 l^3 \cos^2 \theta}{12H^3} \tag{1}$$

其中, E 为导线弹性模量; A 为导线的面积; H 为导 线的沿弦向张力; l 为导线的水平档距; θ 为风荷载 与导线之间的夹角。若索只受重力作用,则 q 为分 布重度;若索同时还受侧向风荷载作用,则上式中还 需要添加风荷载的贡献,则 q 为风荷载与自重荷载 的合力。

导线侧向受力分析模型如图 1 所示。水平虚线 表示变形前的导线,实线表示变形后的位置;U 为导 线侧向位移;F 为侧向摆动力;θ₁ 与θ₂ 分别为导线 与原位行的夹角。根据静力平衡条件可以得到导线 侧向刚度系数

$$K_{\rm dt} = \frac{H_1}{L_1} + \frac{H_2}{L_2} \tag{2}$$

其中,L₁、L₂分别为相邻2跨长度;H₁和H₂分别为 相邻2跨导线水平张力。

图1 导线侧向的受力分析

1.3 绝缘子力学模型

输电塔的绝缘子一般有单串和"V"串2种形式。单串绝缘子主要考虑沿线向和侧向2个方向的 摆动刚度,"V"串绝缘子沿导线向刚度为2串绝缘 子之和,侧向刚度可以根据2串绝缘子的轴向刚度 和夹角确定。以下主要介绍单串绝缘子沿2个方向 的摆动刚度求解,忽略悬挂绝缘子串的拉伸变形,假 定绝缘子轴向为完全刚性。以沿导线向(X向)摆 动刚度系数为例,典型的变位后的绝缘子串形状如 图2所示,图中水平荷载 F_x主要是由于导线的自 重、覆冰以及风荷载引起。根据静力平衡,可以得到 刚度系数

$$K_{jx} = \frac{W + G/2}{L} \sec^3 \theta_x \tag{3}$$

其中, L为绝缘子串长度; G为绝缘子自重; W为绝

缘子底部作用导线自重及覆冰等垂直荷载; θ_x 为绝 缘子串在 xz 平面上的投影与z 轴的夹角。K_{jx} 为悬 挂绝缘子串 x 向摆动切线刚度, y 向摆动刚度可以 进行类似推导。可见绝缘子的刚度系数和自重、投 影长度以及摆动角度、导线上的自重及覆冰、风荷载 (引起 W 的变化)等均有关,与变形呈强非线性关 系,现有商用软件均未有合适单元可以采用,必须自 编程序实现。

图2 绝缘子的受力分析

1.4 边界条件

在分别求得了导线、绝缘子、输电塔的刚度,输 电塔-线体系边界处的竖向刚度、横向刚度可以通过 对直线塔的相邻跨刚度集成得到(直到耐张塔)。定 义输电塔的刚度为 K_i,绝缘子的刚度为 K_i,导线的 刚度为 K_d。由于输电塔与绝缘子属于串联关系,和导 线则属于并联关系,则总的刚度矩阵有如下表达式

$$K_{\rm e} = \frac{K_{\rm t} \cdot K_{\rm j}}{K_{\rm t} + K_{\rm j}} + K_{\rm d} \tag{4}$$

2 覆冰作用下静力非线性计算

根据上述分析过程,以正在修建的向家坝一上

相邻跨导(地)线、输电塔以及绝缘子的边界条 件用弹簧模拟,经计算,地线连接处边界弹簧刚度分 别为 30.24 kN/m、16.72 kN/m、1 130 kN/m;导线 连接处边界弹簧刚度分别为 76.34 kN/m、1 760 kN/m、1 140 kN/m。体系各构件刚度如表 1 所示, 其中 X 向为顺线向(铁塔为大悬臂导线悬挂点处), Y 向为侧向,Z 向为竖向。可以看出,不论是覆冰还 是不覆冰状态,铁塔、导(地)线以及绝缘子体系耦联 作用是显著的。

图 3 输电塔线体系分析模型

	ナロ	铁塔	覆冰 30 mm				不覆冰			
	刀鸣		导线(6根)	导线绝缘子	地线	地线绝缘子	导线(6根)	导线绝缘子	地线	地线绝缘子
	x 向	500e3	65.22e3	26.87e3	15.5e3	16.69e3	26.78e3	9.58e3	10.08e3	4.53e3
	y 向	2.0e6	1 076.5	14.5e6	172	16.69e3	338	14.5e6	56	4.53e3
	2 向	1.2e6	1 076.5	23.4e6	172	20.0e6	338	23.4e6	56	20.0e6

表1 体系各构件刚度/(N·m⁻¹)

对7种覆冰工况进行了静力非线性分析,其中 工况1:导(地)线不覆冰、风速27 m/s;工况2:导 (地)线覆冰厚度30 mm,风速15 m/s;工况3:导 (地)线覆过载冰,覆冰厚度45 mm,风速15 m/s;工 况4:不均匀覆冰I(第1跨前导线、第2跨后导线覆 冰30 mm,其余不覆冰),风速 15 m/s; 工况 5:不均匀 覆冰 II(第 1 跨前导线、第 2 跨后导线覆冰 45 mm,其 余覆冰 30 mm),风速 15 m/s;工况 6:不均匀覆冰 I (第 1 跨前导线、第 2 跨后导线覆冰 30 mm,其余不 覆冰),风速为 0; 工况 7:不均匀覆冰 I(1 跨前导线、 2 跨后导线覆冰 30 mm,其余不覆冰),风速 30 m/s。 前 7 种工况为实际工程设计中需要考虑的工况,后 2 种工况主要是用来和工况 4 比较。

分别计算了体系在线性及非线性分析工况下的 内力,计算结果表明,输电塔构件的内力受几何非线 性的影响和其拉压状态有关,考虑几何非线性后,受 拉构件及受压较小构件内力有适度降低,但以受压 为主的构件由于荷载非线性比较明显,内力有所增 大。在5种工况下,弹性支座处的反力和大部分受 拉杆件、导(地)线的内力等在考虑了几何非线性的 影响后均变小。"V"串绝缘子中受拉一侧内力变 小,受压一侧增大。5种工况下输电塔的支座反力 如表 2,由于结构对称,因此只取了 2688、2705、 2720等几个点分析(节点编号见图 3)。表中 F_x 、 F_y 、 F_z 、 M_x 、 M_y 、 M_z 分别表示全局坐标系下结构在 x、y、z方向的力和力矩。结果表明,工况 1、工况 2、 工况 3的内力增大不是非常明显,工况 4-工况 7的 $P-\Delta$ 效应比较明显。工况 4中主要受压支座节点 2688和 2720最大竖向反力(F_z 方向)分别增大 6.7%和 4.1%,最大弯矩(M_x 方向)增大 11.6%和 11.8%。工况 5节点 2688及 2720轴向反力分别增 大 15.5%、4.1%,弯矩分别增大 16.2%和17.9%。

表2 输电塔支座节点反力/N

工况		节点	F_x/N	F_y/N	F_z/N	$M_x/(N \cdot m)$	$M_y/({ m N} \cdot { m m}))$	$M_z/({ m N} \cdot { m m})$
	线性	0.705	70 480.81	$-72\ 154.54$	454 499.04	-12 991.86	-14 232.76	-272.05
上优工	非线性	2 705	70 772.66	-72 208.71	455 990.76	-13 275.02	-144 20.42	-253.39
エヨッ	线性	2 705	67 477.10	-70 761.60	436 048.60	-11 472.37	-13 648.74	-467.88
上仇 2	非线性		67 623.71	-70693.35	436 633.30	-11 684.46	-13791.09	-454.45
一月 2	线性	2 705	116 982.12	-121 094.20	757 141.31	-20 629.07	-23752.08	-688.19
上班。	非线性	2 705	118 062.02	-121 339.22	762 952.31	-21 556.63	-24 340.57	-622.01
	线性	2 600	37 303.59	11 361.31	176 077.84	12 710.93	2 289.24	-2 635.95
т И 4	非线性	2 000	39 797.64	8 772.89	175 398.05	14 184.16	3 785.73	-3 152.85
工机 4	线性	0.500	-63 497.61	-42 517.68	364 926.60	-14 069.17	2 422.55	-1 999.81
	非线性	2 720	-66 093.35	-39 838.42	364 599.79	-15 728.57	955.02	-2546.56
	线性	2 600	18 741.28	-109.32	82 419.70	10 056.89	1 413.08	-2 070.32
тИг	非线性	2 000	21 643.18	-3 473.09	79 599.43	11 690.61	3 373.07	-2 693.26
上のこう	线性	0.700	-92 078.84	-86 617.58	610 365.85	-14 058.36	11 721.97	-331.60
	非线性	2 720	-95 899.91	-83289.58	613 007.61	-16 573.79	10 079.20	-1 058.96
	线性	9.699	49 904.50	26 266.09	266 916.32	13 412.80	20.14	-2 337.38
エ刃で	非线性	2 000	52 431.80	23 651.49	266 356.08	14 961.54	1 506.42	-2 866.88
上仇的	线性	2 720	-50 896.69	-27 612.90	274 088.12	-13 367.30	153.45	-2 298.38
	非线性		-53 440.78	-24 988.11	273 642.85	-14 927.49	-1 328.58	-2 829.25
	线性	9.699	-499.15	-33 353.03	-96 437.60	10 605.31	9 096.53	-3 531.64
- 11 / /	非线性	2 688	2 007.54	-36029.59	-97 480.50	11 988.53	10 606.21	-4 030.95
上仍1	线性	0.700	-101 300.34	-87232.03	637 442.04	-16 174.79	9 229.85	-1 104.11
	非线性	2 720	-104 163.91	-84 224.58	637 464.50	$-18\ 271.76$	7 825.04	-1 719.00

表 3 为上述工况中前 5 种工况下分别考虑几何 非线性和线性工况下计算的输电塔横担底部最大受 压弦杆的内力(单元号见图 3)。表中 *P*、*V*₂、*V*₃、*T*、 *M*₂、*M*₃分别表示局部坐标系下结构的最大轴力、剪力、扭矩和弯矩。结果表明,工况1、工况2、工况3、 杆件内力都变化不大,但对于工况4和工况5,其 表3 输电塔大悬臂下端单元内力

P-△效应比较明显。工况4中单元91和单元115的 轴力最大分别增大9.4%和8.7%,弯矩分别增大 6.7%和16.5%。工况5中单元91和单元115的轴 力最大分别增大4.0%和4.2%。

工况		单元	P/N	V_2/N	V_3/N	$T/(N \cdot m)$	$M_2/(\mathrm{N} \cdot \mathrm{m})$	$M_3/(\mathrm{N} \cdot \mathrm{m})$
	线性	110	-335 030.00	2 055.08	3 505.23	6.27	-3 469.00	-3705.66
上仍工	非线性	110	-334 811.00	1 700.33	3 522.60	6.54	-3 456.94	-3 670.77
エカの		110	-113 934.99	234.44	-1719.56	-10.12	1 907.88	-295.08
1.06.2	非线性	110	-114 125.95	200.12	-1722.00	-10.17	1 903.40	-303.08
一丁畑ッ	线性	110	$-386\ 169.67$	792.82	4 932.36	3.59	-5 213.54	-2 098.63
上763	非线性	110	$-386\ 633.05$	339.57	4 957.90	3.91	-5 183.76	-2 112.09
	线性	91	$-362\ 968.17$	5 123.77	1 208.11	-18.79	-2737.05	-8 168.32
ゴ畑4	非线性	91	$-396\ 963.03$	4 760.02	-1741.82	-15.96	-1 374.33	-8 713.35
上76 4	线性	115	-276 486.04	2 568.63	934.26	-18.45	-2 073.54	-4 040.44
	非线性	115	-300 605.18	2 612.44	-1 542.37	-15.63	-689.27	-4 706.30
	线性	91	-620 345.32	9 394.17	-2 377.42	-8.93	1 614.77	-15 626.75
	非线性	91	-645 103.37	7 474.44	-4714.76	-9.24	1 941.56	-15 550.08
1.06 0	线性	115	-370 869.20	2 029.16	-3 063.13	-8.17	3 380.35	-3712.57
	非线性	115	-386 579.04	1 763.54	-4561.35	-7.83	3 712.06	-4 137.05

3 荷载非线性分析

从上述计算中可以看出,前3种工况由于结构 和荷载对称,铁塔支座底部和大悬臂底部只受到侧 向风荷载的作用,在考虑几何非线性分析之后,结构 的内力变化相差不大,一般较线性分析结果偏小。 当考虑不均匀覆冰工况(工况4-工况7)之后,铁塔 两侧导线的张力不平衡,从而产生对铁塔的扭转效 应。一段底部铁塔在扭矩T作用下的变形如图4所 示,从变形图可见,扭矩使铁塔产生扭转,主要角柱 产生侧向偏移,因此在压力 P 作用下产生附加弯 矩,从而导致荷载非线性。

图4 输电塔扭转变形示意图

没有风荷载作用下,铁塔受到仅有扭转作用和 轴向力作用,铁塔受力杆件产生侧移,从而产生次弯 矩。经反复计算,结果表明,主材次弯矩的影响可以 参考现行钢结构设计规范^[16]建议的公式近似简化 估算。

若输电塔-线体系受到风荷载的作用,由于导线 覆冰致使导线的迎风面积发生改变,铁塔两侧导线 的风荷载也会引起导线张力不一致,从而使铁塔产 生扭转效应和侧弯效应。在轴力、扭距和弯矩作用 下,在考虑几何非线性时铁塔主要杆件的轴力、剪力 和弯矩均发生明显的改变,有些杆件增大,有些杆件 变小。对工况4、工况6、工况7的计算结果比较表 明,在不均匀覆冰工况下,风荷载会增大扭转效用的 非线性影响,除弯矩外,轴力、剪力也会有一定的增 加,变化规律较复杂,应该采用精确的几何非线性力 学模型分析。

4 结 论

采用输电塔-线体系的简化模型分析了 7 种覆 冰工况下结构的内力和变形情况。分析表明,在结 构荷载和体型均为对称的工况下,扭转效应较小,从 而导致荷载非线性不是很显著,多数构件按线性计 算结果较非线性结果大,计算结果偏于保守。若导 线受到不均匀覆冰作用,由于导线不平衡张力对铁 塔的扭转作用,主要受压支座节点和最大悬臂处单 元的轴向压力和弯矩都有较明显的 P-Δ 效应。另 外,在不均匀覆冰工况下,导(地)线上风荷载也会增 大扭转效用的非线性影响,弯矩、轴力、剪力均会产 生一定的改变。算例表明,考虑几何非线性后,当风 速为15 m/s 以及导线不均匀覆冰 II(第1 跨前导 线、第2 跨后导线覆冰45 mm,其余覆冰30 mm)时, 支座节点轴向反力可增大15.5%,弯矩可增大 17.9%。可见,与一般结构考虑几何非线性后会减 小结构响应不同,在不对称覆冰及风荷载下,考虑几 何非线性会增大输电塔-线体系内力响应,在工程设 计中应该采用精确的几何非线性力学模型分析这种 不利影响。

参考文献:

- [1]李正,杨靖波,韩军科,等. 2008 年输电线路冰灾倒塔 原因分析[J]. 电网技术. 2009, 33(2): 31-35.
 LI ZHENG, YANG JING-BO, HAN JUN-KE, et al. Analysis on transmission tower toppling caused by icing disaster in 2008[J]. Power System Technology. 2009, 33(2): 31-35.
- [2] LI HONG-NAN, BAI HAI-FENG. High-voltage transmission Tower-line system subjected to disaster loads[J]. Progress in Natural Science, 2006, 16 (9): 899-911.
- [3] EL-GHAZALYT H A, AL-KHAIATZ H A. Analysis and design of guyed transmission towers-case study in KUWAIT[J]. Computers & Structure, 1998, 55(3): 413-431.
- [4] DA SILVA J G S, DA S P C G , DE ANDRADE SA L, et al. Structural assessment of current steel design models for transmission and telecommunication towers [J]. Journal of Constructional Steel Research. 2005, 61(8): 1108-1134.
- [5] PRASAD RAO N, KALYANARAMAN V. Non-linear behaviour of lattice panel of angle Towers[J]. Journal of Constructional Steel Research. 2001, 57(12): 1337-1357.
- [6] 邓洪洲,陈晓明,屠海明,等. 江阴大跨越输电塔模型试验研究[J]. 建筑结构学报,2001,22(12):31-35..
 DENG HONG-ZHOU, CHEN XIAO-MING, TU HAIMING, et al. Experimental study on model of Jiangyin long span transmission tower[J]. Journalof Building Structures. 2001, 22(12): 31-35.

- [7] PARK JI-HUN, MOON BYOUNG-WOOK, MIN KYUNG-WON, et al. Cyclic loading test of frictiontype reinforcing members upgrading wind-resistant performance of transmission towers [J]. Engineering Structures. 2007, 29(11); 3185-3196.
- [8] ROY S, FANG S-J, ROSSOW EC. Secondary stresses on transmission tower structures[J]. Journal of Energy Engineering. 1984, 110(2): 157-171.
- [9] RONALDO C BATTISTAA, ROSANGELA S RODRIGUESA, et al. Dynamic behavior and stability of transmission line towers under wind forces [J]. Journal of Wind Engineering and Industrial Aerodynamics. 2003, 91(8): 1051-1067.
- [10] ANTANAS KUDZYS. Safety of power transmission line structures under wind and ice storms [J]. Engineering Structures. 2006, 28(5): 682-689.
- [11] WAHBA Y M F, MADUGULA M K S, MONFORTON G R. Evaluation of non-linear analysis of guyed antenna towers[J]. Computers & Structures. 1998, 68(1-3): 207-212.
- [12] 胡松. 大跨越输电线路的风振反应分析及振动控制研 究[D]. 上海:同济大学土木工程学院. 1999.12.
- [13] 李宏男,胡大柱,黄连状. 地震作用下输电塔体系塑性极限状态分析[J]. 中国电机工程学报. 2006, 26(24): 192-199.
 LI HONG-NAN, HU DA-ZHU, HUANG LIAN-ZHUANG. Plastic limit analysis of the transmission tower system subjected to earthquake action [J].

Proceedings of the CSEE. 2006, 26(24):192-199.

- [14] 梁峰,李黎,尹鹏.大跨越输电塔-线体系数值分析模型的研究[J],振动与冲击,2007,26(2):61-65.
 LIANG FENG, LI LI, YIN PENG. Numerical analysis of power transmission tower line model[J]. vibration and shock, 2007, 26 (2):61-65.
- [15] SOROKINA S V, REGA G, GOULOIS A M. On modelling and linear vibrations of arbitrarily sagged inclined cables in a quiescent viscous fluid[J]. Journal of Fluids and Structures, 2007,23(7): 1077-1092.
- [16] GB50017-2003 钢结构设计规范[S].北京:中国计划出版社. 2003.

(编辑 胡 玲)