Experimental Analysis on Axial Compressive Behavior of R- CFTStub Columns with Prestressed Binding Bars
LI Jun-hua,WANG Jian-min and LI Yu-shun
DOI:10.11835/j.issn.1674-4764.2010.06.006
Received May 07, 2010,Revised , Accepted , Available online July 01, 2015
Volume ,2010,Pages 28-35
- Abstract
In order to investigate the effect of prestressed binding bars on axial compressive behavior of rectangular concrete-filled tubular (CFT) short columns, five rectangular CFT short columns, three with prestressed binding bars, one with ordinary binding bars, the other with no binding bars, were constructed and tested under axial compressive loads. The binding bars were made up with high-strength bolts. As used for ordinary binding bars, the high-strength bolts were welded to the steel tube before the column was loaded to axial compressive force. As used for prestressed binding bars, the high-strength bolts were first tensed by screwed screw cap down to bring force to prestress the steel tube and its core concrete, then welded to the steel tube before the column was loaded to axial compressive force. Test results indicate that the bearing capacity and ductility of rectangular CFT short columns are increased by setting binding bars. Compared to ordinary binding bars, the prestressed binding bars can decrease the longitudinal displacements corresponding to ultimate strength, but have little effect on the ultimate strength and displacement capacity after ultimate strength of the columns. The longitudinal displacements corresponding to ultimate strength of the columns decrease with the decreasing of space between binding bars. With the same section width and amount of binding bars, the bearing capacity of the columns improves with the increase of section long-broad-ratio, while displacement capacity after ultimate strength decreases with the increase of section long-broad-ratio.